Advance Search
HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564
Citation: HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564

A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis

More Information
  • Received Date: February 10, 2015
  • Published Date: August 27, 2015
  • Research on early embryogenesis and fertilization is a central issue for understanding sexual reproduction in higher plants. The forward genetic method e.g. mutation, is commonly used to explore the physiological functions of genes in plants. However, the high false positive rate in mutant libraries based on regular mutagenesis methods, for example T-DNA insertion, transposon, ethylmethane sulfonate and high-energy rays, retard the screening of mutants related to fertilization and early embryogenesis. To solve this problem, we developed a new method to construct mutant stock. We introduced a pollen-specific fluorescence marker (pLAT52::EGFP) into the T-DNA element of the plasmid pCAMBIA1302, then transferred it into the qrt1-2 mutant, in which the four products of microsporogenesis remained fused and pollen grains were released as tetrads, to construct a T-DNA insertion mutant library. This allowed us to discard the false positive mutants rapidly by simply visualizing the fluorescence of pollen. In addition, we could determine the mutated gene locus of candidate mutants through inverse-PCR. Results showed that this method could help screen mutants related to fertilization and early embryo development rapidly and identify the mutated gene locus efficiently.
  • [1]
    曹冬梅,范喜英,王云山,唐黎芳. 拟南芥激活标签突变体库的构建及突变体表型的分析[J] .农业生物技术学报,2008,16(2): 292-298.
    [2]
    The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000, 408(6814): 796-815.
    [3]
    孙万刚. 拟南芥突变体构建方法及目的基因分离鉴定技术[J]. 安徽农业科学,2010,38(18): 9433- 9434.
    [4]
    Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis[J]. Genetics, 2003, 164(2): 731-740.
    [5]
    Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M,Phillips AL. Mutation discovery for crop improvement[J]. J Exp Bot, 2009, 60(10): 2817-2825.
    [6]
    宋磊, 杨仲南, 吴世福, 崔永兰. 拟南芥网状突变体E-210基因精细定位[J].植物科学学报,2008, 26(5): 437-442.
    [7]
    Springer PS. Gene traps: tools for plant development and genomics[J]. Plant Cell, 2000, 12(7): 1007-1020.
    [8]
    An G, Lee S, Kim SH, Kim SR. Molecular gene-tics using T-DNA in rice[J]. Plant Cell Physiol, 2005, 46(1): 14-22.
    [9]
    Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions[J]. Funct Integr Genomics, 2005, 5(4): 240-253.
    [10]
    崔清志,刘晓红,陈惠明. EMS诱变技术研究进展[J]. 湖南农业科学,2013,13(5): 7-9.
    [11]
    阎双勇,谭振波,李仕贵. 水稻插入突变体库构建研究进展[J]. 中国生物工程杂志,2004,24(6): 48-53.
    [12]
    Brink RA, Cooper DC. Double fertilization and development of the seed in angiosperms[J]. Botanical Gazette, 1940, 102(1): 1-25.
    [13]
    Preuss D, Rhee SY, Davis RW. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET(QRT)genes[J]. Science, 1994, 264(5164): 1458-1460.
    [14]
    Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497.
    [15]
    Clough SJ,Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6): 735-743.
    [16]
    曾凡锁,詹亚光. 转基因植物中外源基因的整合特性及其研究策略[J]. 植物学通报,2004,21(5): 565-577.
    [17]
    梁春莉,刘孟军,赵锦. 植物种子败育研究进展[J]. 分子植物育种,2005,3(1): 117-122.
    [18]
    Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C,Koncz-Kalman Z. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension[J]. Plant J, 1998, 13(5): 707-716.
    [19]
    Souer E, Quattrocchio F, de Vetten N, Mol J, Koes R. A general method to isolate genes tagged by a high copy number transposable element[J]. Plant J, 1995, 7(4): 677-685
    [20]
    赵霞,周波,李玉花. T-DNA 插入突变在植物功能基因组学中的应用[J]. 生物技术通讯,2009,6(20): 880-885.
    [21]
    Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreeni-vasan R, Baskar R, Grossniklaus U, Yang WC. The central cell plays a critical role in pollen tube guidance in Arabidopsis[J]. Plant Cell, 2007, 19(11): 3563-3577.
    [22]
    Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis[J]. PLoS Biol, 2007, 5(3): 494-500.
    [23]
    Wu JJ, Peng XB, Li WW, He R, Xin HP, Sun MX. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes[J]. Dev Cell, 2012, 23(5): 1043-1058.
  • Related Articles

    [1]Song Shuaishuai, Wu Hao, Lü Linyu, Xiao Zhiqiang, Yang Teng, Shi Hongwen, Wei Xinzeng. Geographic patterns of leaf functional traits and environmental drivers of national key protected wild plant Davidia involucrata Baillon[J]. Plant Science Journal, 2024, 42(2): 160-169. DOI: 10.11913/PSJ.2095-0837.23112
    [2]Chen Xu-Bo, Zhang Yu-Xi, Zhang Ya-Fen, Luo Zheng-Rong. Response of phenotypic plasticity of invasive Ageratum conyzoides L. to interspecific competition[J]. Plant Science Journal, 2023, 41(1): 37-43. DOI: 10.11913/PSJ.2095-0837.22099
    [3]DAI Can, QIN Dao-Feng, LUO Wen-Jie. Ecological and Evolutionary Studies on Sagittaria (Alismataceae)[J]. Plant Science Journal, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620
    [4]GAO Le-Xuan. Comparisons of Morphological Variation and Cellular Osmotic Potential Adjustment between Invasive Species Alternanthera philoxeroides and its Native Congener A. sessilis under Different Water Treatments[J]. Plant Science Journal, 2015, 33(2): 195-202. DOI: 10.11913/PSJ.2095-0837.2015.20195
    [5]DENG Ying, GAO Le-Xuan, ZHU Zhu, YANG Ji. Differential Expression of DNA Methylation Regulating Factors and Dynamic Methylation Patterns of Alternanthera philoxeroides under Different Water Treatments[J]. Plant Science Journal, 2014, 32(5): 475-486. DOI: 10.11913/PSJ.2095-0837.2014.50475
    [6]LIAO Ling-Juan, LI-Qing, CHEN Yi-Zhu, LIN Jun-Xin, WU Lin-Fang, CAO Hong-Lin. Effects of Environmental Disturbance on Leaf Morphological Traits, Stomata, and Water Use Efficiency of Species for Afforestation on a Windward Slope in a Coastal Zone[J]. Plant Science Journal, 2011, 1(5): 613-624.
    [7]HU Ying, CHU Hai-Jia, LI Jian-Qiang. Response of Leaf Anatomy Characteristics and Its Plasticity to Different Soil-water Conditions of Medicago ruthenica in Four Populations[J]. Plant Science Journal, 2011, 29(2): 218-225.
    [8]SUN Xiao-Fang, REN Ming-Xun, WANG Gang, TAN Gen-Jia, HE Jia-Qing, HUANG Xun-Duan, PING Jiang, GE Jie-Lin. Photosynthetic Physiology and Clonal Growth of Solidago canadensis at Different Light Intensities:Implications for Invasive Mechanism[J]. Plant Science Journal, 2008, 26(6): 620-626.
    [9]LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567.
    [10]XU Kai-Yang, YE Wan-Hui, LI Guo-Min, LI Jing. Phenotypic Plasticity in Response to Light Intensity in the Invasive Species Alternanthera philoxeroides[J]. Plant Science Journal, 2005, 23(6): 560-563.
  • Cited by

    Periodical cited type(9)

    1. 杨奕颖,苏思霖,曹恩志,李红有,迟洪明,蔺凯,吴旭东,何文强,杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响. 中国沙漠. 2025(01): 162-172 .
    2. 杨建欣,龚买玉,马长乐,樊智丰,高灿,王李娟,邓莉兰. 大头茶属3种植物天然居群的叶表型性状特征研究. 植物科学学报. 2025(01): 21-31 . 本站查看
    3. 冯云,张韫,范少辉,刘广路,魏松坡. 12种竹子的叶表型变异及其与环境因子的关系. 西北林学院学报. 2024(01): 147-153 .
    4. 马凡强,简尊吉,郭泉水,秦爱丽,梁洪海,杨永明. 长期水陆周期性变化条件下香根草形态性状和生物量分配的可塑性. 生态学报. 2023(02): 672-680 .
    5. 吴天彧,杨依康,周帅,张清舒,罗建. 色季拉山不同海拔梯度下三花杜鹃叶表型性状变异研究. 高原农业. 2022(01): 41-48 .
    6. 袁娅娟,白小明,朱雅楠,张毓婧,闫玉邦,张才忠,李玉杰. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报(中英文). 2021(08): 1359-1369 .
    7. 牛雪婧,聂靖,杨自云,赵雪利. 河北木蓝叶表型对干旱胁迫的响应. 西北植物学报. 2020(04): 613-623 .
    8. 刘涛,吕婷,刘玉萍,梁瑞芳,陈志,苏旭. 青藏高原特有属——固沙草属表型变异及其对环境因子的响应. 西北植物学报. 2020(07): 1219-1229 .
    9. 艾喆,徐婷婷,周兆娜,马飞. 小叶锦鸡儿天然居群叶形态性状变异研究. 西北植物学报. 2020(09): 1595-1604 .

    Other cited types(5)

Catalog

    Article views (1341) PDF downloads (3047) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return