Advance Search
LI Ya-Li, MENG Ting-Ting, ZHANG Xiao-Li, FU Chun-Hua, YU Long-Jiang. Operation Strategy Optimization of Glycyrrhiza uralensis Fisch Cell Amplification Culture in a Stirring Bioreactor[J]. Plant Science Journal, 2015, 33(6): 867-872. DOI: 10.11913/PSJ.2095-0837.2015.60867
Citation: LI Ya-Li, MENG Ting-Ting, ZHANG Xiao-Li, FU Chun-Hua, YU Long-Jiang. Operation Strategy Optimization of Glycyrrhiza uralensis Fisch Cell Amplification Culture in a Stirring Bioreactor[J]. Plant Science Journal, 2015, 33(6): 867-872. DOI: 10.11913/PSJ.2095-0837.2015.60867

Operation Strategy Optimization of Glycyrrhiza uralensis Fisch Cell Amplification Culture in a Stirring Bioreactor

More Information
  • Received Date: May 06, 2015
  • Published Date: December 27, 2015
  • An amplification cultivation system using a stirred tank bioreactor was established to obtain optimal conditions for licorice cell cultivation. The reactor operation strategy was optimized using the BP neural network coupling genetic algorithm, cell biomass accumulation net growth index, and data from single factor and orthogonal experiments. Results showed that an inoculum of 6.4%, shaking speed of 89 r/min and aeration rate of 0.1 vvm were the optimal culture conditions for Glycyrrhiza uralensis Fisch cells in the bioreactor. Coupling genetic algorithm optimization based on the neural network was compared with the traditional orthogonal experiments, which showed that cell biomass accumulation increased by 6.9%.
  • [1]
    Zhang QY, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice) [J]. Chromatogr, 2009, 1216 (11): 1954-1969.
    [2]
    董静洲, 易自力, 蒋建雄. 我国药用植物资源研究概况[J]. 医学研究杂志, 2006, 35(1): 67-69.
    [3]
    Kelly W, Gigas B. Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime[J]. Chem Eng Sci, 2003, 58(10): 2141-2152.
    [4]
    Mousa NA, Siaguru P, Wiryowidagdo S, Wagih ME. Establishment of regenerative callus and cell suspension system of licorice (Glycyrrhiza glabra) for the production of the sweetener glycyrrhizinin vitro[J]. Sugar Tech, 2007, 9(1): 72-82.
    [5]
    Nagata Y, Chu KH. Optimization of a fermentation medium using neural networks and genetic algorithms[J]. Biotechnol Lett, 2003, 25(21): 1837-1842.
    [6]
    杨英. 甘草细胞培养合成甘草黄酮及其调控研究[D]. 武汉:华中科技大学, 2007.
    [7]
    Yang Y, He F, Yu LJ. Dynamics analyses of nutrients consumption and flavonoids accumulation in cell suspension culture of Glycyrrhiza inflata[J]. Biologia Plantarum, 2008, 52(4): 732-734.
    [8]
    王莹, 仇宏伟. 基于神经网络和遗传算法的岩藻多糖酶发酵培养基优化[J]. 青岛农业大学学报:自然科学版, 2014, 31(2): 131-135.
    [9]
    周勇, 郑毅, 宋利丹. 人工神经网络与遗传算法耦合法优化辅酶Q10发酵培养基[J].中国生物工程杂志, 2013, 33(9): 73-78.
    [10]
    Luo JF, Lin WT, Cai XL, Li JY. Optimization of fermentation media for enhancing nitrite-oxidizing activity by artificial neural network coupling genetic algorithm[J]. Chin J Chem Eng, 2012, 20(5): 950-957.
    [11]
    郭慧慧. 基于BP 神经网络与遗传算法的苏云金芽胞杆菌发酵优化[J]. 生物技术进展, 2013, 3(2):137-139.
    [12]
    陆震鸣, 何喆, 许泓瑜, 史劲松, 许正宏. 基于人工神经网络-遗传算法的樟芝发酵培养基优化[J]. 生物工程学报, 2011, 27(12): 1773-1779.
    [13]
    高爱同, 毕珂, 齐育平, 蒋冬花. BP神经网络和遗传算法在乳酸菌发酵参数优化中的应用[J]. 应用与环境生物学报, 2014, 20(1): 112-116.
  • Related Articles

    [1]Wei Sha-Sha, Li Peng-Peng, Yuan Long-Yi, Li Wei, Jiang Hong-Sheng. Leaf structure and inorganic carbon acquisition strategies of heteroblastic aquatic plants at different stages of development[J]. Plant Science Journal, 2022, 40(4): 544-552. DOI: 10.11913/PSJ.2095-0837.2022.40544
    [2]Wan Xiao-Xia, Sun Li-Yong, Zou Xuan, Chen Yao, Jiang Zheng, Yin Zeng-Fang. Branching and flowering regularity of Michelia maudiae Dunn with systematic and evolutionary evidence[J]. Plant Science Journal, 2021, 39(3): 229-237. DOI: 10.11913/PSJ.2095-0837.2021.30229
    [3]Du Yan, Liu Xin, Zhang Han-Yue, Li Hui, Bao Wei-Kai. Species composition and community structure of the subtropical evergreen broad-leaved forest in Hongling Mountain, Tianquan County, Sichuan Province, China[J]. Plant Science Journal, 2019, 37(5): 583-592. DOI: 10.11913/PSJ.2095-0837.2019.50583
    [4]Song Jun-Yang, Luo Teng, Zhang Ning. Leaf structure characteristics of five species of Cymbidium[J]. Plant Science Journal, 2019, 37(4): 422-433. DOI: 10.11913/PSJ.2095-0837.2019.40422
    [5]Jiang Yu, Tao Lian, He Jun-Rong. Structure of leaf variegation in Cymbidium tortisepalum Fukuy. var. longibracteatum[J]. Plant Science Journal, 2018, 36(1): 112-118. DOI: 10.11913/PSJ.2095-0837.2018.10112
    [6]Song Li-Ya, Li Yong-Quan, Zhang Wei, Shao Jian-Wen. Highly differentiated phylogeographic structure of Primula ranunculoides[J]. Plant Science Journal, 2017, 35(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2017.40503
    [7]LEI Ping, ZOU Si-Cheng, LAN Wen-Jun. Structural and Quantity Characteristics of Riparian Zone Broad-leaved Forest Communities under Different Disturbance Intensities in Jiangxi Wuyi Mountain[J]. Plant Science Journal, 2014, 32(5): 460-466. DOI: 10.11913/PSJ.2095-0837.2014.50460
    [8]LU Zhi-Jun, BAO Da-Chuan, GUO Yi-Li, LU Jun-Meng, WANG Qing-Gang, HE Dong, ZHANG Kui-Han, XU Yao-Zhan, LIU Hai-Bo, MENG Hong-Jie, HUANG Han-Dong, WEI Xin-Zeng, LIAO Jian-Xiong, QIAO Xiu-Juan, JIANG Ming-Xi, GU Zhi-Rong, LIAO Chun-Lin. Community Composition and Structure of Badagongshan (BDGS) Forest Dynamic Plot in a Mid-subtropical Mountain Evergreen and Deciduous Broad-leaved Mixed Forest, Central China[J]. Plant Science Journal, 2013, 31(4): 336-344. DOI: 10.3724/SP.J.1142.2013.40336
    [9]ZHENG Li-Feng, ZHOU Xin-Nian. Influence of the Selective Intensity on Spatial Structure of Mid-subtropical Natural Mixed Stand of Conifer and Broad-leaved Trees[J]. Plant Science Journal, 2009, 27(5): 515-521.
    [10]Wang Guiqin, Lu Jingmei, Hu Bo. EVOLUTIONAL STRUCTURE STUDY OF VESSEL ELEMENT ON DIFFERENT EVOLVEMENT TYPE OF GLYCINE[J]. Plant Science Journal, 2000, 18(4): 271-274,.

Catalog

    Article views (1319) PDF downloads (1099) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return