Advance Search
LÜ Tian-Feng, HAO Fei, XIONG Zheng, LIU Xing. Preliminary Analysis on the Genetic Diversity of Myriophyllum spicatum from China[J]. Plant Science Journal, 2016, 34(1): 109-116. DOI: 10.11913/PSJ.2095-0837.2016.10109
Citation: LÜ Tian-Feng, HAO Fei, XIONG Zheng, LIU Xing. Preliminary Analysis on the Genetic Diversity of Myriophyllum spicatum from China[J]. Plant Science Journal, 2016, 34(1): 109-116. DOI: 10.11913/PSJ.2095-0837.2016.10109

Preliminary Analysis on the Genetic Diversity of Myriophyllum spicatum from China

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31170203).

More Information
  • Received Date: September 01, 2015
  • Available Online: October 31, 2022
  • Published Date: February 27, 2016
  • To determine the genetic structure of natural Myriophyllum spicatum populations in mainland China and the possible mechanism that led to the widely distributed pattern of the species, eight populations were examined for preliminary genetic analysis based on three chloroplast DNA segments (trnK-matK, trnL-trnF, rpl32-trnL). The AMOVA analysis results showed that the genetic diversity among the eight populations was 84.97% and within the populations was 15.03%. Furthermore, the population genetic differentiation coefficient (Fst) was 0.85, indicating high genetic diversity in M. spicatum (Hd=0.83) among populations. The founder effect may have led to the initial genetic differences and segregation barriers (Nm=0.09) may have further resulted in genetic differentiation among populations. From the constructed phylogenetic tree and haplotype network based on 17 haplotypes, haplotypes H5 and H6 had the highest frequency and widest distribution, indicating they were possibly the oldest ancestral haplotypes. The Mantel test showed no significant correlation between genetic and geographic distances among populations, and the mismatch distribution test showed that historic M. spicatum populations likely experienced expansion events. Tajima's, Fu & Li's D* and F* tests showed that this species did not have an obvious phylogeographic pattern, which may have resulted from long distance dispersal of seeds.
  • [1]
    Strand JA, Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. J Ecol, 2001, 89(2): 166-175.
    [2]
    范国兰, 李伟. 穗状狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J]. 武汉植物学研究, 2005, 23(3): 267-271.

    Fan GL, Li W. Response of nutrient accumulation characteristics and nutrient strategy of Myriophyllum spicatum L. under different eutrophication conditions[J]. Journal of Wuhan Botanical Research, 2005, 23(3): 267-271.
    [3]
    钟爱文, 曹特, 张萌, 倪乐意, 谢平. 光照和黑暗条件下苦草(Vallisneria natans)和穗状狐尾藻(Myriophyllum spicatum)对铵态氮的吸收[J]. 湖泊科学, 2013, 25(2): 289-294.

    Zhong AW, Cao T, Zhang M, Ni LY, Xie P. Uptake of ammonium by Vallisneria natans and Myriophyllum spicatum under light and dark regimes[J]. Journal of Lake Science, 2013, 25(2): 289-294.
    [4]
    Li GX, Zhang DD, Li QS, Chen GY. Effects of pH on isotherm modeling and cation competition for Cd(Ⅱ) and Cu(Ⅱ) biosorption on Myriophyllum spicatum from aqueous solutions[J].Environ Earth Sci, 2014, 72(11): 4237-4247.
    [5]
    Heine S, Schmitt W, Görlitz G, Schäffer A, Preuss TG. Effects of light and temperature fluctuations on the growth of Myriophyllum spicatum in toxicity tests-a model-based analysis[J]. Environ Sci Pollut Res, 2014, 21(16): 9644-9654.
    [6]
    袁桂香,符辉,钟家有,倪乐意,朱天顺,李威,宋鑫. 铵胁迫对狐尾藻(Myriophyllum spicatum)和金鱼藻(Ceratophyllum demersum)生物量分配和形态的影响[J]. 湖泊科学, 2013, 25(5): 729-734.

    Yuan GX, Fu H, Zhong JY, Ni LY, Zhu TS, Li W, Song X. Changes in biomass allocation and morphology of Myriophyllum spicatum and Ceratophyllum demersum under the ammonium stress[J]. Journal of Lake Science, 2013, 25(5): 729-734.
    [7]
    Heine S, Schmitt W, Schaffer A, Gorlitz G, Buresová H, Arts G, Preuss TG. Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum[J]. Chemosphere, 2015, 120: 292-298.
    [8]
    LaRue EA, Grimm D, Thum RA. Laboratory crosses and genetic analysis of natural populations demonstrate sexual viability of invasive hybrid watermilfoils (Myriophyllum spicatum × M. sibiricum)[J]. Aquat Bot, 2013, 109: 49-53.
    [9]
    Weyl PS, Coetzee JA. The invasion status of Myriophyllum spicatum L. in southern Africa[J]. Management, 2014,5(1): 31-37.
    [10]
    Borrowman KR, Sager EPS, Thum RA. Distribution of biotypes and hybrids of Myriophyllum spicatum and associa-ted Euhrychiopsis lecontei in lakes of Central Ontario, Canada[J]. Lake Reserv Manage, 2014, 30(1): 94-104.
    [11]
    Moody ML, Les DH. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations[J]. Proc Natl Acad Sci USA, 2002, 99(23): 14867-14871.
    [12]
    Clegg MT, Gaut BS, Learn GH, Morton BR. Rates and patterns of chloroplast DNA evolution[J]. Proc Natl Acad Sci USA, 1994, 91(15): 6795-6801.
    [13]
    李丹丹, 郭水良, 于晶,李莎,曹同. 基于 4 个叶绿体基因识别蓑藓属 (Macromitrium)植物的可行性研究[J]. 植物科学学报, 2013, 31(1): 23-33.

    Li DD, Guo SL, Yu J, Li S, Cao T. Feasibility study on the identification of genus Macromitrium based on four chloroplast genes[J]. Plant Sceince Journal, 2013, 31(1): 23-33.
    [14]
    赵晶华, 贾倩, 金洪涛, 盛彦敏. 木兰叶绿体atpB和rbcL基因的系统进化分析[J]. 长春师范大学学报: 自然科学版, 2014, 33 (6):71-74.

    Zhao JH, Jia Q, Jin HT, Sheng YM. Evolution analysis of the chloroplast genes atpB and rbcL of magnolia[J]. Journal of Changchun Normal University,2014, 33 (6):71-74.
    [15]
    宋敏舒, 乐霁培, 孙航, 李志敏. 横断山地区海仙报春的谱系地理学研究[J]. 植物分类与资源学报, 2011, 33(1): 91-100.

    Song MS, Yue JP, Sun H, Li ZM. Phylogeographical study on Primula poissonii (Primulaceae) from Hengduan Mountains[J]. Plant Diversity and Resources, 2011, 33(1): 91-100.
    [16]
    Chen JM, Du ZY, Sun SS, Gituru RW, Wang QF. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas[J]. PloS ONE, 2013, 8(4): e60948.
    [17]
    Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation[J]. Mol Ecol, 2005, 14(11): 3513-3524.
    [18]
    陈家瑞. 中国植物志: 第53卷[M]. 北京: 科学出版社, 2000: 136.

    Chen JR. Flora Republicae Popularis Sinicae: Vol. 53[M]. Beijing: Science Press, 2000: 136.
    [19]
    Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19: 11-15.
    [20]
    Johnson LA, Soltis DE. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str.[J]. Syst Bot, 1994: 143-156.
    [21]
    Taberlet P, Gielly L, Pautou G, Bouvet J. Universal pri-mers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5): 1105-1109.
    [22]
    Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ[J]. Am J Bot, 2007, 94(3): 275-288.
    [23]
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
    [24]
    Rozas J, Rozas R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data[J].Comput Applic Biosci, 1995, 11(6): 621-625.
    [25]
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
    [26]
    Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709.
    [27]
    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.
    [28]
    Excoffier L, Laval G, Schneider S. Arlequin (version 3. Barrett SCH, Eckert CG, Husband BC. Evolutionary processes in aquatic plant populations[J]. Aquat Bot, 1993, 44(2): 105-145.
    [33]
    Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London: Edward Arnold, 1967.
    [34]
    Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment[J]. Acta Oecol, 2002, 23(3): 137-154.
    [35]
    Chen LY, Zhao SY, Mao KS, Les DH, Wang QF, Moody ML. Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental disper-sals[J]. Mol Phylogenet Evol, 2014, 78: 87-95.
    [36]
    Laushman RH. Population genetics of hydrophilous angiosperms[J]. Aquat Bot, 1993, 44(2): 147-158.
    [37]
    Djebrouni M. Variabilité morphologique, caryologique et enzymatique chez quelques populations de Phragmites australis (Cav.) Trin. Ex Steud[J]. Folia Geobotanica et Phytotaxonomica, 1992, 27(1): 49-59.
    [38]
    Hollingsworth PM, Preston CD, Gornall RJ. Genetic variability in two hydrophilous species of Potamogeton, P. pectinatus and P. filiformis (Potamogetonaceae)[J]. Plant Syst Evol, 1996, 202(3/4): 233-254.
    [39]
    Koga K, Kadono Y, Setoguchi H. The genetic structure of populations of the vulnerable aquatic macrophyte Ranunculus nipponicus (Ranunculaceae)[J]. J Plant Res, 2007, 120(2): 167-174.
    [40]
    Gao L, Ge S, Hong D. Low levels of genetic diversity within populations and high differentiation among populations of a wild rice, Oryza granulata Nees et Arn. ex Watt., from China[J]. Int J Plant Sci, 2000, 161(4): 691-697.
    [41]
    Zhang ML, Fritsch PW. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Syst Evol, 2010, 288(3-4): 191-199.
    [42]
    Li J, Fang X. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Sci Bull, 1999, 44(23): 2117-2124.
    [43]
    Hamrick JL, Godt MJW. Allozyme diversity in plant species[M]//Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA: Sinauer Associates Inc.,1990:43-63.
    [44]
    Aiken SG. Counts on Haloragaceae[J]. Taxon, 1978, 27: 519-535.
    [45]
    Aiken SG. A conspectus of Myriophyllum (Haloragaceae) in North America[J]. Brittonia, 1981, 33(1): 57-69.
    [46]
    Linder HP, Barker NP. Does polyploidy facilitate long-distance dispersal?[J]. Ann Bot, 2014, 113(7): 1175-1183.
  • Related Articles

    [1]Liu Fenfen, Mo Liangtuan, Ou Guoteng, Nie Yimei, Niu Tao, Huang Qinjun. Genetic diversity and genetic structure analysis of wild Chinese Rosa roxburghii Tratt. germplasm resources[J]. Plant Science Journal, 2024, 42(3): 350-358. DOI: 10.11913/PSJ.2095-0837.23248
    [2]Li Xiang, Zhou Ya-Dong, Huang Yu-Qian, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity and structure of Isoetes taiwanensis based on nuclear and chloroplast DNA sequences[J]. Plant Science Journal, 2017, 35(6): 851-855. DOI: 10.11913/PSJ.2095-0837.2017.60851
    [3]TAO Ai-Fen, QI Jian-Min, SU Jian-Guang, FANG Ping-Ping, LIN Li-Hui, XU Jian-Tang, WU Jian-Mei, LIN Pei-Qing. Analysis of Genetic Diversity of Jute (Corchorus L.) Germplasm Revealed by SRAP[J]. Plant Science Journal, 2012, (2): 178-187. DOI: 10.3724/SP.J.1142.2012.20178
    [4]MA Rui-Jun, LU Jian-Ying. Genetic Diversity of Ground Cover Plant Potentilla anserina L.[J]. Plant Science Journal, 2010, 28(4): 473-479.
    [5]ZHENG Lu, QI Jian-Ming, FANG Ping-Ping, SU Jian-Guang, XU Jian-Tang, TAO Ai-Fen. Genetic Diversity and Phylogenetic Relationship of CastorGermplasm as Revealed by SRAP Analysis[J]. Plant Science Journal, 2010, 28(1): 1-6.
    [6]REN Xiao-Ping, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong, WANG Sheng-Yu, LI Dong. Genetic Diversity of Arachis hypogaea var.hirsute in Peanut[J]. Plant Science Journal, 2007, 25(4): 401-405.
    [7]XIA Jing, GUO You-Hao. ISSR Analysis for Genetic Diversity of Pedicularis dunniana[J]. Plant Science Journal, 2006, 24(6): 565-568.
    [8]BIN Xiao-Yun, TANG Shao-Qing, ZHOU Jun-Ya, SONG Hong-Tao, LI Zun-Yi. ISSR Analysis on Genetic Diversity of Camellia nitidissima Chi (Theaceae) in China[J]. Plant Science Journal, 2005, 23(1): 20-26.
    [9]CHENG Zhong-Ping, CHEN Zhi-Wei, HU Chun-Gen, DENG Xiu-Xin. Study on Genetic Diversity of Amygdalus persica Based on RAPD Markers[J]. Plant Science Journal, 2002, 20(2): 89-99.
    [10]LUO Ding-Ze, HOU Xin, ZHAO Zuo-Cheng. Genetic Diversity of Fagopyrum urophyllum Populations in Southwest China[J]. Plant Science Journal, 2001, 19(2): 107-112.

Catalog

    Article views (1246) PDF downloads (1034) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return