Citation: | OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255 |
[1] |
Priyadarshan PM. Contributions of weather variables for specific adaptation of rubber tree (Hevea brasiliensis Muell.-Arg) clones[J]. Genet Mol Biol, 2003, 26(4):435-440.
|
[2] |
Priyadarshan PM, Hoa TTT, Huasun H, de Gonçalves PS. Yielding potential of rubber (Hevea brasiliensis) in subo-ptimal environments[J]. Journal of Crop Improvement, 2005, 14(1-2):221-247.
|
[3] |
Eriksson ME, Webb AAR. Plant cell responses to cold are all about timing[J]. Curr Opin Plant Biol, 2011, 14(6):731-737.
|
[4] |
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8):1043-1054.
|
[5] |
Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression[J]. Plant Mol Biol, 1994, 24(5):701-713.
|
[6] |
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. PNAS, 1997, 94(3):1035-1040.
|
[7] |
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol, 2000, 124(4):1854-1865.
|
[8] |
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenber-ger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280(5360):104-106.
|
[9] |
Fursova OV, Pogorelko GV, Tarasov VA. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009, 429(1):98-103.
|
[10] |
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell, 2005, 17(11):3155-3175.
|
[11] |
Catherine B, Matt G, Johan T, Norman H, Vaughan H. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiol, 2006, 141(4):1219-1232.
|
[12] |
Agarwal M,Hao Y, Kapoor A, Dong CH, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645.
|
[13] |
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. PNAS, 2006, 103(21):8281-8286.
|
[14] |
Miura K, Jin J, Lee J, Yoo C, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4):1403-1414.
|
[15] |
Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015, 32(3):278-289.
|
[16] |
Huang XS, Zhang QH, Zhu DX, Fu XZ, Wang M, Zhang Q, Moriguchi T, Liu JH. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase[J]. J Exp Bot, 2015, 66(11):3259-3274.
|
[17] |
Kositsup B, Montpied P, Kasemsap P, Thaler P, Améglio T, Dreyer E. Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures[J]. Trees, 2009, 23(2):357-365.
|
[18] |
Kratsch H, Wise R. The ultrastructure of chilling stress[J]. Plant Cell Environ, 2000, 23(4):337-350.
|
[19] |
Mai J, Herbette S, Vandame M, Cavaloc E, Julien JL, Ameglio T, Roeckel-Drevet P. Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis[J]. Tree physiol, 2010, 30(11):1391-1402.
|
[20] |
Cheng H, Cai HB, Fu HT, An ZW, Fang JL, Hu YS, Guo DJ, Huang HS. Functional characterization of Hevea brasiliensis CRT/DRE binding factor 1 gene revealed regulation potential in the CBF pathway of tropical perennial tree[J].PloS One,2015,10(9):e0137634.
|
[21] |
HAO BZ,Wu JL. Laticifer differentiation in Hevea brasiliensis:induction by exogenous jasmonic acid and linolenic acid[J]. Ann Bot, 2000, 85(1):37-43.
|
[22] |
Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(8):2907-2924.
|
[23] |
Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis[J]. Plant Mol Biol, 2011, 77(3):299-308.
|
[24] |
Rahman AYA, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou SB, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013, 14(75):1471-2164.
|