Advance Search
ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406
Citation: ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406

Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31260568,31160060).

More Information
  • Received Date: December 03, 2015
  • Revised Date: January 04, 2016
  • Available Online: October 31, 2022
  • Published Date: June 27, 2016
  • Arabidopsis thaliana DnaJ homolog 3 (AtJ3), an Arabidopsis chaperone, interacts with SOS2-like protein kinase 5 (PKS5) to form the AtJ3-PKS5 complex and achieves its function through repressing activity of PKS5 in vivo. Moreover, the AtJ3-PKS5 complex positively regulates plasma membrane H+-ATPase activity and is involved in exogenous ABA response in Arabidopsis. In this study, salt- and ABA-treated Arabidopsis AtJ3 and PKS5 mutants were explored to elucidate the function and mechanism of the AtJ3-PKS5 complex in the simultaneous regulation of membrane H+-ATPase activity and ABA response. Results showed that the AtJ3-PKS5 complex not only led to changes in the cytosolic pH value via regulation of plasma membrane H+-ATPase activity, but also activated expression of the ABA-related responsive genes under the two treatments. Additionally, exogenous application of ABA induced trafficking of AtJ3 from the nucleus to the cytoplasm to enhance H+-ATPase activity, indicating that the AtJ3-PKS5 complex functions in ABA-meditated pH homeostasis. Taken together, our results suggest that the AtJ3-PKS5 complex might serve as a key regulator in a crosstalk metabolic pathway of H+-ATPase activity regulation and exogenous ABA response.
  • [1]
    平军娇, 张珍, 蔡振锋, 汤贤春, 钱刚. 千里光热激蛋白90-3(Hsp90-3)的生物信息学与功能分析[J]. 植物科学学报, 2012, 30(4): 385-393.
    [2]
    Ping JJ, Zhang Z, Cai ZF, Tang XC, Qian G. Functional roles of heat shock proteins 90-3 (Hsp90-3) in Senecio scandens Buch.-Ham. ex D. Don based on its bioinforma-tics[J]. Plant Science Journal , 2012, 30(4): 385-393.
    [2]
    Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants[J]. Plant Mol Biol ,1996, 32(1/2): 191-222.
    [3]
    Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants[J]. J Exp Bot , 1996, 47(3): 325-338.
    [5]
    Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci , 2004, 9(5): 244-252.
    [6]
    Miernyk JA. The J-domain proteins of Arabidopsis thaliana : An unexpectedly large and diverse family of chaperones[J]. Cell Stress Chaperones , 2001, 6(3): 209-218.
    [7]
    Shen L, Yu H. J3 regulation of flowering time is mainly contributed by its activity in leaves[J]. Plant Signal Behav , 2011, 6(4): 601-603.
    [8]
    Shen L, Kang YG, Liu L, Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis [J]. Plant Cell , 2011, 23(2): 499-514.
    [9]
    李坤, 王鲜萍, 杨凤博, 许守明. MAPK级联途径参与ABA信号转导调节的植物生长发育过程[J]. 植物科学学报, 2014, 32(5): 531-539.

    Li K, Wang XP, Yang FB, Xu SM. Roles of mitogen-activated protein kinase cascades in ABA signaling regulation of plant development[J]. Plant Science Journal , 2014, 32(5): 531-539.
    [10]
    Hrabak EM, Chan CW, Gribskov M, Harper JF, et al . The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol , 2003,132(2): 666-680.
    [11]
    Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives[J]. New Phytol , 2009, 184(3): 517-528.
    [12]
    Sheen J, Zhou L, Jang J. Sugars as signaling molecules[J]. Curr Opin Plant Biol , 1999, 2(5): 410-418.
    [13]
    Cheong YH, Kim KN, Pandey GK,Gupta R, Grant JJ, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J]. Plant Cell , 2003, 15(8): 1833-1845.
    [14]
    Gong DM, Gong ZZ, Guo Y, Chen X, Zhu JK. Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase[J]. J Biol Chem , 2002, 277(31): 28340-28350.
    [15]
    Qin YZ, Guo M, Li X, Xiong XY, He CZ, Nie XZ, Liu XM. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis [J]. Sci China Ser C , 2010, 40(10): 970-977.
    [16]
    Qin YZ, Li X, Guo M, Deng KQ, Lin JZ, Tang DY, Guo XH,Liu XM. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis [J]. Sci China Ser C , 2008, 38(5): 446-457.
    [17]
    Fuglsang AT , Guo Y, Cuin TA , Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. Plant Cell , 2007, 19(5): 1617-1634.
    [18]
    Yang YQ, Qin YX, Xie CG, Zhao FY, et al . The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. Plant cell , 2010, 22(4): 1313-1332.
    [19]
    Zhou XL, Hao HM, Zhang YG, Bai YL, et al . SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5[J]. Plant Physiol , 2015, 168(2): 659-676.
    [20]
    Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana , by SOS2 and SOS3[J]. Proc Natl Acad Sci USA , 2002, 99(12): 8436-8441.
    [21]
    Yan F, Zhu YY, Muller C, Zörb C, Schubert S. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of whitelupin under phosphate deficiency[J]. Plant Physiol , 2002, 129(1): 50-63.
    [22]
    Ozkan P, Mutharasan R. A rapid method for measuring intracellular pH using BCECF-AM[J]. Biochim Biophys Acta , 2002, 1572(1):143-148.
    [23]
    Quan RD, Lin H X, Mendoza I, Zhang YG, Cao WH, Yang YQ, Shang M, Chen SY, Pardo JM,Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. Plant Cell , 2007, 19(4): 1415-1431.
    [24]
    Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell , 2001, 13(6): 1383-1399.
    [25]
    Gong DM, Zhang CQ, Chen XY, Gong ZZ, Zhu JK. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase[J]. J Bio Chem , 2002, 277(44): 42088-42096.
    [26]
    Gong DM, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabid opsis [J]. Plant Physiol , 2004, 134(3): 919-926.
    [27]
    赵菲佚, 焦成瑾, 陈荃, 袁毅君, 王廷璞, 呼丽萍. 拟南芥 PKS5 点突变体对盐碱胁迫的响应特性[J]. 西北植物学报, 2013, 33(1): 53-59.

    Zhao FY, Jiao CJ, Chen Q, Yuan YJ, Wang TP, Hu LP. Characteristics of the point mutants of PKS5 respond to the salt-alkali stress in Arabidopsis [J]. Acta Botanica-occidentalia Sinica , 2013, 33(1): 53-59.
    [28]
    Shang Y, Yan L, Liu ZQ. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22(6):1909-1935.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (1017) PDF downloads (1233) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return