Advance Search
ZHAO Jing, CAI Shen-Wen, XU Zhong-Rui, XIONG Zhi-Ting. Isolation and Activity Analysis of Cell Wall Invertase Gene Promoter (EhcwINVP) from Elsholtzia haichowensis Sun[J]. Plant Science Journal, 2016, 34(3): 420-429. DOI: 10.11913/PSJ.2095-0837.2016.30420
Citation: ZHAO Jing, CAI Shen-Wen, XU Zhong-Rui, XIONG Zhi-Ting. Isolation and Activity Analysis of Cell Wall Invertase Gene Promoter (EhcwINVP) from Elsholtzia haichowensis Sun[J]. Plant Science Journal, 2016, 34(3): 420-429. DOI: 10.11913/PSJ.2095-0837.2016.30420

Isolation and Activity Analysis of Cell Wall Invertase Gene Promoter (EhcwINVP) from Elsholtzia haichowensis Sun

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (21477093, 31270432) and the Research Fund of Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Province (HBRCEBL2013-2014004).

undefined

More Information
  • Received Date: December 10, 2015
  • Revised Date: January 14, 2016
  • Available Online: October 31, 2022
  • Published Date: June 27, 2016
  • Cell wall invertase gene promoter, EhcwINVP (1727 bp), was amplified from the genomic DNA of Elsholtzia haichowensis Sun by hiTAIL-PCR and genome walking PCR. Bioinformatics analysis showed that the promoter fragment contained multiple cis-acting elements involved in the regulation of hormones including abscisic acid, gibberellin, cytokinin, and tolerance to drought, low temperature, and heavy metals such as copper. The pCAMBIA1301 binary vector was digested with restriction enzymes to remove the 35S promoter that drove GUS expression and replaced with EhcwINVP sequences to generate the construct EhNcwINVP::GUS. Histochemical analyses of transgenic Arabidopsis thaliana L. plants indicated that the EhcwINVP promoter was capable of driving GUS expression, and GUS activity in the leaves and roots of transgenic A. thaliana plants increased by about 1.7 and 1.5 times that of the control under copper stress, respectively.
  • [1]
    谢学锦, 徐邦梁. 铜矿指示植物海州香薷[J]. 地质学报, 1952, 32(4): 360-368.

    Xie XJ, Xu BL. Copper mineralization indicator plant:Elsholtzia haichouensis[J]. Acta Geologica Sinica, 1952, 32 (4): 360-368.
    [2]
    柯文山, 熊治廷, 金则新, 柯世省. 海州香薷(Elsholtzia haichouensis Sun)不同生态型Cu吸收和酸性磷酸酶活性差异[J]. 生态学报,2007,27(8): 3172-3181.

    Ke WS, Xiong ZT, Jin ZX, Ke SX. Differences of Cu uptake and acid phosphatase activities of two Elsholtzia haichouensis Sun populations[J]. Acta Ecologica Sinica, 2007, 27(8): 3172-3181.
    [3]
    潘雪峰, 李明, 赵盼, 唐堃, 董闪, 赵冬. 铜胁迫对穿心莲幼苗生长及生理特性的影响[J]. 植物科学学报, 2015, 33(2): 218-225.

    Pan XF, Li M, Zhao P, Tang K, Dong S, Zhao D. Coppex [JP3]stress effects on the growth and physiological characteristics of Andrographis paniculata seedlings[J]. Plant Science Journal, 2015, 33(2): 218-225.
    [4]
    Izmailow R, Biskup A. Reproduction of Echium vulgare L. (Boraginaceae) at contaminated sites[J]. Acta Biol Cracov Bot, 2003, 45 (1): 69-75.
    [5]
    Bernal M, Ramiro MV, Cases R, Picorel R,Yruela I. Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions[J]. Physiol Plant, 2006, 127(2): 312-325.
    [6]
    Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms[J]. Annu Rev Plant Biol, 2006, 57(1): 685-709.
    [7]
    Roitsch T, González MC. Function and regulation of plant invertases: sweet sensations[J]. Trends Plant Sci, 2004, 9(12): 606-613.
    [8]
    Bolouri Moghaddam MR, Van dEW. Sugars and plant innate immunity [J]. J Exp Bot, 2012, 63 (11): 3989-3998.
    [9]
    Sturm A. Invertases: primary structures, functions, and roles in plant development and sucrose partitioning[J]. Plant Physiol, 1999, 121(1): 1-8.
    [10]
    Hayes MA, Feechan A, Dry IB. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection[J]. Plant Physiol, 2010, 153(1): 211-221.
    [11]
    Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco[J]. Nat Biotechnol, 1994, 8(8): 807-812.
    [12]
    Kim JY, Mahe A, Brangeon J, Prioul JL. A maize vacuolar invertase, IVR2, is induced by water stress Organ/tissue specificity and diurnal modulation of expression[J]. Plant Physiol, 2000, 124(1): 71-84.
    [13]
    Benhamou N, Grenier J, Chrispeels MJ. Accumulation of beta-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen[J]. Plant Physiol, 1991, 97 (2): 739-750.
    [14]
    Zeng Y, Wu Y, Avigne WT, Koch KE. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival[J]. Plant Physiol, 1999, 121(2): 599-608.
    [15]
    Sfaxi-Bousbih A, Chaoui A, Ferjani EE. Cadmium impairs [JP3]mineral and carbohydrate mobilization during the germination of bean seeds[J]. Ecotox Environ Saf, 2010, 73(6): 1123-1129.
    [16]
    Huang Y, Xiong ZT, Dai LP. Effect of Cu stress on the invertase activity and root growth in two populations of Rumex dentatus L. with different Cu tolerance[J]. Environ Toxicol, 2008, 23(4): 443-450.
    [17]
    Xiong ZT, Wang T, Liu K. Differential invertase activity and root growth between Cu-tolerant and non-tolerant populations in Kummerowia stipulacea under Cu stress and nutrient deficiency[J]. Environ Exp Bot, 2008, 62(1): 17-27.
    [18]
    Cai SW, Xiong ZT, Li L, Li MJ, Zhang L, Liu C, Xu ZR. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis[J]. Ecotoxicology, 2014, 23(1): 76-91.
    [19]
    Hirsche J, Engelke T, Völler D, Götz M, Roitsch T. Interspecies compatibility of the anther specific cell wall inver-tase promoters from Arabidopsis and tobacco for generating male sterile plants[J]. Theor Appl Genet, 2009, 118 (2): 235-245.
    [20]
    Proels RK, Roitsch T. Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm[J]. J Exp Bot, 2009, 60(6): 1555-1567.
    [21]
    Taliercio E, Scheffler J, Scheffler B. Characterization of two cotton (Gossypium hirsutum L.) invertase genes[J]. Mol Biol Rep, 2010, 37(8): 3915-3920.
    [22]
    施维属, 潘腾飞, 钟凤林, 潘东明, 李开拓, 王江波, 郭志雄, 刘天亮. 柑橘基因组DNA快速提取及ISSR-PCR扩增体系优化[J]. 生物技术通报, 2009, 10: 109-113.

    Shi WS, Pan TF, Zhong FL, Pan DM, Li KT, Wang JB, Guo ZX, Liu TL. Improvement of genomic DNA extraction method and optimization of ISSR-PCR amplification for citrus[J]. Biotechnology Bulletin, 2009, 10: 109-113.
    [23]
    Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. Bio techniques, 2007, 43 (5): 649-656.
    [24]
    Min WL, Yang Y. Transient expression assay by agroinfiltration of leaves[J]. Methods Mol Biol, 2006, 323: 225-229.
    [25]
    Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6): 735-743.
    [26]
    Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nat Protoc, 2006, 1(2): 641-646.
    [27]
    Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system[J]. Plant Mol Biol Rep, 1987, 5(4): 387-405.
    [28]
    Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat[J]. J Exp Bot, 2005, 56(409): 179-190.
    [29]
    Oliver SN, Dongen JT, vanAlfred SC, Mamun EA, Zhao XC, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J].Plant Cell Environ, 2005, 28(12): 1534-1551.
    [30]
    Pressman E, Harel D, Zamski E, Firon N. The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development[J]. J Hortic Sci Biotech, 2006, 81(3): 341-348.
    [31]
    朱玉贤, 李毅, 郑晓峰. 现代分子生物学[M]. 3版.北京: 高等教育出版社, 2007: 297.

    Zhu YX, Li Y, Zheng XF. Modern molecular biology[M]. 3rd ed.Beijing: Higher Education Press, 2007: 297.
    [32]
    Ku HM, Tan CW, Su YS, Chiu CY, Chen CT, Jan FJ. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana[J]. Biol Plantarum, 2012, 56(2): 337-343.
    [33]
    Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile[J].Plant Physiol Bioch, 2010, 48(8): 673-682.
    [34]
    Ulker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498.
    [35]
    Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C. Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides[J]. BMC Plant Biol, 2008, 8(1): 1-12.
    [36]
    Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng X. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter[J]. Planta, 2009, 230(6): 1155-1166.
    [37]
    Lu SY, Gu HY, Yuan XJ, Wang XM, Wu AM, Qu LJ, Liu JY. The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis[J]. Transgenic Res, 2007, 16(2): 177-191.
    [38]
    Qi XT, Zhang YX, Chai TY. Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness[J]. Plant Physiol, 2007, 143(1):50-59.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (1269) PDF downloads (1353) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return