Advance Search
ZHOU Zhi-Wei, SHEN Dan-Dan, GAO Bao-Yan, HUANG Luo-Dong, LI Ai-Fen, ZHANG Cheng-Wu. Cultivation of a Starch-rich Microalga Desmodesmus insignis in Dairy Wastewater and Removal of Nitrogen and Phosphorus[J]. Plant Science Journal, 2016, 34(3): 446-459. DOI: 10.11913/PSJ.2095-0837.2016.30446
Citation: ZHOU Zhi-Wei, SHEN Dan-Dan, GAO Bao-Yan, HUANG Luo-Dong, LI Ai-Fen, ZHANG Cheng-Wu. Cultivation of a Starch-rich Microalga Desmodesmus insignis in Dairy Wastewater and Removal of Nitrogen and Phosphorus[J]. Plant Science Journal, 2016, 34(3): 446-459. DOI: 10.11913/PSJ.2095-0837.2016.30446

Cultivation of a Starch-rich Microalga Desmodesmus insignis in Dairy Wastewater and Removal of Nitrogen and Phosphorus

Funds: 

This work was supported by grants from the National High-Tech R&D Program (863 Program, 2013AA065805), National Natural Science Foundation of China (31170337), Guangdong Low-Carbon Program (2011-051), Zhuhai Major Projects of Science and Technology (PB20041018), and Key Project of Science and Technology of Zhuhai (PC20081008).

undefined

undefined

undefined

undefined

More Information
  • Received Date: November 24, 2015
  • Revised Date: January 12, 2016
  • Available Online: October 31, 2022
  • Published Date: June 27, 2016
  • Desmodesmus insignis strain JNU24 was cultivated in BG-11 medium containing four different initial NaNO3 concentrations and dairy wastewater (DWW) diluted into four concentrations to compare its growth, starch production performance, and nitrogen and phosphorus removal capacity in DWW. Results indicated that the optimum nitrate concentrations and DWW concentration for growth were 9.0 mmol/L and 100%, respectively, in which biomass achieved was 6.23 g/L and 10.31 g/L, respectively. Compared with the BG-11 group, however, D. insignis showed a greater ability to grow and accumulate starch when cultivated with 75% DWW, in which the starch content, volumetric starch content, and productivity reached 50.9%, 4.86 g/L, and 405 mg·L-1·d-1 respectively. In addition, D. insignis removed 90.8% of nitrogen and 98.7% of phosphorus from DWW. Indoor scaled-up cultivation of D. insignis was carried out in vertical flat-plate glass photobioreactors based on optimum concentrations of BG-11 and DWW. The maximum biomass concentration, volumetric starch content, and productivity of D. insignis were obtained under 75% DWW, reaching 9.75 g/L, 4.75 g/L, and 230 mg·L-1·d-1, respectively, which were approximately two times greater than those obtained in the BG-11 group. These results showed that D. insignis could tolerant high nitrate concentrations in DWW, and could be applied on a large scale with cheap media. The D. insignis cells exhibited outstanding settling capacity, as inferred from their ability to settle within 90 min in 75% DWW after stopping aeration. In conclusion, D. insignis is a microalga that has the potential to produce starch and purify wastewater.
  • [1]
    Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: An answer to debatable land based fuels[J]. Bioresource Technol, 2011, 102: 10-16.
    [2]
    Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production[J]. J Chem Technol Biot, 2010, 85(2): 199-203.
    [3]
    Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation[J]. Int J Hydrogen Energ, 2006, 31: 812 -816.
    [4]
    Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K. High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand[J]. Nat Sci,2007, 41: 570-575.
    [5]
    Nguyen MT, Choi SP, Lee J, H, Sim SJ. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production[J]. J Microbiol Biotechn, 2009, 19(2): 161-166.
    [6]
    Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale[J]. J Ferment Bioeng, 1998, 86(1): 38-43.
    [7]
    Ueda R, Hirayama S, Sugata K, Nakayama H. Process for the production of ethanol from microalgae. US Patent, 5578472.1996-11-26.
    [8]
    Subhadra B, Edwards M. An integrated renewable energy park approach for algal biofuel production in United States[J]. Energ Policy,2010, 38(9): 4897-4902.
    [9]
    Packer M. Algal capture of carbon dioxide; biomass ge-neration as a tool for greenhouse gas mitigation with refe-rence to New Zealand energy strategy and policy[J]. Energ Policy, 2009, 37(9): 3428-3437.
    [10]
    Ignacio MG. Microalgae immobilization: current techniques and uses[J]. Bioresource Technol, 2008, 99(10): 3949-3964.
    [11]
    Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review [J]. Biometals,2002, 15: 377-390.
    [12]
    Li X, Hu HY, Gan K, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.[J]. Bioresource Technol, 2010, 101: 5494-5500.
    [13]
    Meyen FJF. Beobachtungen über Einige Niedere Algenformen[M]. Nova Acta: Phys.-med. Acad. Caesar. Leop. Carol,1829,14: 769-778.
    [14]
    Chodat R. Scenedesmus[J]. Zeitschrift für Hydrologie, 1926, 3(3-4): 71-258.
    [15]
    An SS, Friedl T, Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons[J]. Plant Biol, 1999, 1(4): 418-428.
    [16]
    Groben R, John U, Eller G, Lange M, Medlin LK. Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity-a mini-review[J]. Nova Hedwigia, 2004, 79(1-2): 313-320.
    [17]
    Johnson JL, Fawley MW, Fawley KP. The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasca State Park, Minnesota, USA[J]. Phycologia, 2007, 46(2): 214-229.
    [18]
    Rawat I, Kumar RR, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production[J]. Applied Energy, 2011, 88(10): 3411-3424.
    [19]
    Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and rela-ted substances[J]. Anal Chem, 1956, 28 (3): 350-356.
    [20]
    Mccready RM, Guggolz J, Silviera V, Owens HS. Determination of starch and amylose in vegetables[J]. Anal Chem,1950, 22(9): 1156-1158.
    [21]
    John DM. Phylum Chlorophyta (Green Algae)[M]//John DM, Whitton BA, Brook AJ eds. The Freshwater Algal Flora of The British Isles. 2nd ed. Cambridge: Cambridge University Press, 2011:440-443.
    [22]
    Mutanda T, Ramesh D, Karthikeyan S, et al. Bioprospec-ting for hyper-lipid producing microalgal strains for sustai-nable biofuel production[J]. Bioresource Technol, 2011,1(102): 57-70.
    [23]
    Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources[J].Bioresource Technol, 2011,1(102): 17-25.
    [24]
    Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M. Microalgae-novel highly efficient starch producers[J]. Biotechnol Bioeng, 2011, 108(4): 766-776.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (1186) PDF downloads (1255) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return