Advance Search
LI Qiang, CAO Yang, ZHANG Zheng, TUO Deng-Feng, BU Yao-Jun, BAI Yun. Review on the Application of Bioimpedance Methods in Plant Root Biology Research[J]. Plant Science Journal, 2016, 34(3): 488-495. DOI: 10.11913/PSJ.2095-0837.2016.30488
Citation: LI Qiang, CAO Yang, ZHANG Zheng, TUO Deng-Feng, BU Yao-Jun, BAI Yun. Review on the Application of Bioimpedance Methods in Plant Root Biology Research[J]. Plant Science Journal, 2016, 34(3): 488-495. DOI: 10.11913/PSJ.2095-0837.2016.30488

Review on the Application of Bioimpedance Methods in Plant Root Biology Research

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (41201088, 41371506), Specialized Research Fund for the Doctoral Program of Higher Education (2014YB056, 2452015484), Open Fund from the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021402-1604), Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20150108), and Agricultural Research Project in Shaanxi Province (2014K01-12-03).

undefined

undefined

undefined

undefined

More Information
  • Received Date: December 07, 2015
  • Revised Date: February 22, 2016
  • Available Online: October 31, 2022
  • Published Date: June 27, 2016
  • Due to the limitation of appropriate methods, the vast majority of research on plant traits has concentrated on above-ground tissues rather than root systems hindered by soil. Conventional root investigation methods such as soil cores, monoliths, and in-growth cores are inherently labour intensive, time-consuming and destructive. There is, therefore, an urgent need for a non-destructive but reliable method for the estimation of the structure and function of root systems in situ. Numerous studies have shown good correlations between electrical impedance parameters (capacitance, resistance and electrical impedance spectroscopy) and root weight and morphology with the measurement of roots under an external electric field. Recently, however, other researchers have argued that the understanding of the electrical behaviour of roots is still poor. This paper introduces the basic theory and measurement of bioimpedance, reviews the different outcomes of root research using bioimpedance, and suggests several questions in regard to the application of bioimpedance. The current research will provide a reference for studies examining non-destructive root systems in situ.
  • [1]
    江华波, 王盛锋, 杨锋, 张中华, 邱亨池, 乙引, 汪洪. 不同浓度硝态氮供应下小麦生长、硝态氮积累及根系钙信号特征[J]. 植物科学学报, 2015, 33(3): 362-368.
    [2]
    Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van degijn SC. Root Methods: A handbook[M]. New York: Springer-Verlag, 2000.
    [2]
    Jiang HB, Wang SF, Yang F, Zhang ZH, Qiu HC, Yi Y, Wang H. Plant growth, nitrate content and Ca signalling in wheat (Triticum aestivum L.) roots under different nitrate supply[J]. Plant Science Journal, 2015, 33(3): 362-368.
    [3]
    Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L. Utility of ground-penetrating radar as a root biomass survey tool in forest systems[J]. Soil Sci Soc Am J, 2003, 67(5): 1607-1615.
    [4]
    Hirano Y, Dannoura M, Aono K, Igarsshi T, Ishii M, Yamase K, Makita N, Kanazawa Y. Limiting factors in the detection of tree roots using ground-penetrating radar[J]. Plant Soil, 2009, 319(1-2): 15-24.
    [5]
    Majdi H. Root sampling methods-applications and limitations of the minirhizotron technique[J]. Plant Soil, 1996, 185(2): 255-258.
    [6]
    Altmann M, Pliquett U, Suess R, Von Borell E. Prediction of lamb carcass composition by impedance spectroscopy[J]. J Anim Sci, 2004, 82(3): 816-825.
    [7]
    董秀珍. 生物电阻抗技术研究进展[J]. 中国医学物理学杂志, 2005, 21(6): 311-317.
    [8]
    Pliquett U. Bioimpedance: a review for food processing[J]. Food Eng Rev, 2010, 2(2): 74-94.
    [9]
    Zhang M, Stout DG, Willison JHM. Plant tissue impedance and cold acclimation: a re-analysis[J]. J Exp Bot, 1992, 43: 263-266.
    [9]
    Dong XZ. The development of the bioelectric impedance technologies[J]. Chinese Journal of Medical Physics, 2005, 21(6): 311-317.
    [10]
    Repo T, Zhang M, Ryyppö A, Vapaavuori E, Sutinen S. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation[J]. J Exp Bot, 1994, 45(6): 823-833.
    [11]
    Repo T, Pulli S. Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass[J]. Ann Bot, 1996, 78(5): 605-609.
    [12]
    Repo T, Zhang G, Ryyppö A, Rikala R. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. J Exp Bot, 2000, 51(353): 2095-2107.
    [13]
    Repo T, Oksanen E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones[J]. Tree Physiol, 2004, 24(7): 833-843.
    [14]
    Ryyppö A, Repo T, Vapaavuori E. Development of free-zing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures[J]. Cana J Forest Res, 1998, 28(4): 557-565.
    [15]
    Tiitta M, Savolainen T, Olkkonen H, Kanko T. Woody moisture gradient analysis by electrical impedance spectroscopy[J]. Holzforsch, 1999, 53: 68-76.
    [16]
    梁军, 屈智巍, 贾秀贞, 刘惠文, 张星耀. 树体电容的生理学研究[J]. 林业科学, 2006, 42(1): 90-95.
    [17]
    王爱芳, 张钢, 魏士春, 崔同祥. 不同发育时期樟子松(Pinus sylvestris L. var. mongolica Litv.)的电阻抗参数与抗寒性的关系[J]. 生态学报, 2008, 28(11): 5741-5749.
    [18]
    Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics[M]. San Diego: Academic Press, 2008.
    [19]
    Liang J, Qu ZW, Jia XZ, Liu HW, Zhang XY. Studies of tree capacitance on the basis of physiology[J]. Scientia Silvae Sinicae, 2006, 42(1): 90-95.
    [19]
    Repo T, Cao Y, Silvennoinen R, Ozier-Lafontaine H. Electrical Impedance Spectroscopy and Roots: Measuring Roots[M]. Berlin Heidelberg: Springer-Verlag, 2012: 25-49.
    [20]
    张钢, 肖建忠, 陈段芬. 测定植物抗寒性的电阻抗图谱法[J]. 植物生理与分子生物学学报, 2005, 31(1): 19-26.
    [21]
    Wang AF, Zhang G, Wei SC, Cui TX. Relation between frost hardiness and parameters of electrical impedance spectroscopy in saplings of different development stage of Pinus sylvestris L. var. mongolica Litv.[J]. Acta Ecologica Sinica, 2008, 28(11): 5741-5749.
    [21]
    游崇娟, 王建美, 田呈明. 植物病害检测领域的电生理学研究进展[J]. 西北林学院学报, 2010, 6(1): 118-122.
    [22]
    Chloupek O. The relationship between electric capacitance and some other parameters of plant roots[J]. Biologia Plantarum, 1972, 14(3): 227-230.
    [23]
    Dalton FN. In-situ root extent measurements by electrical capacitance methods[J]. Plant Soil, 1995, 173(1): 157-165.
    [24]
    Dietrich RC, Bengough AG, Jones HG, White PJ. A new physical interpretation of plant root capacitance[J]. J Exp Bot, 2012, 63(17): 6149-6159.
    [25]
    Ellis T, Murray W, Paul K, Kavalieris L, Brophy J, Williams C, Maass M. Electrical capacitance as a rapid and non-invasive indicator of root length[J]. Tree Physiol, 2013, 33(1): 3-17.
    [25]
    Zhang G, Xiao JZ, Chen DF. Electrical impedance spectroscopy method for measuring cold hardiness of plants[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(1): 19-26.
    [26]
    Kendall WA, Pederson GA, Hill RR. Root size estimates of red clover and alfalfa based on electrical capacitance and root diameter measurements[J]. Grass Forage Sci, 1982, 37(3): 253-256.
    [27]
    Van Beem J, Smith ME, Zobel RW. Estimating root mass in maize using a portable capacitance meter[J]. Agron J, 1998, 90(4): 566-570.
    [27]
    You CJ, Wang JM, Tian CM. Research progress of electrophysiology in plant disease detection[J]. Journal of Northwest Forestry University, 2010, 6(1): 118-122.
    [28]
    Rajkai K, Vegh KR, Nacsa T. Electrical capacitance of roots in relation to plant electrodes, measuring frequency and root media[J]. Acta Agron Hungarica, 2005, 53(2): 197-210.
    [29]
    Aubrecht L, Staněk Z, Koller J. Electrical measurement of the absorption surfaces of tree roots by the earth impe-dance method[J]. Tree Physiol, 2006, 26(9): 1105-1112.
    [30]
    Čermák J, Ulrich R, Staněk Z, Koller J, Aubrecht L. Electrical measurement of tree root absorbing surfaces by the earth impedance method[J]. Tree Physiol, 2006, 26(9): 1113-1121.
    [31]
    Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P. Analysis of the willow root system by electrical impedance spectroscopy[J]. J Exp Bot, 2011, 62(1): 351-358.
    [32]
    张钢, 王爱芳. 针叶树种抗寒性数学模型研究进展[J]. 应用生态学报, 2007, 18(7): 1610-1616.
    [33]
    Srinivas K, Sarah P, Suryanarayana SV. Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18[J]. B Mater Sci, 2003, 26(2): 247-253.
    [34]
    Walker JM. Electrical AC. Resistance and capacitance of Zea mays[J]. Plant Soil, 1965, 23(2): 270-274.
    [35]
    McBride R, Candido M, Ferguson J. Estimating root mass in maize genotypes using the electrical capacitance method[J]. Arch Agron Soil Sci, 2008, 54(2): 215-226.
    [36]
    Pitre FE, Brereton NJB, Audoire S, Richter GM, Shield I, Karp A. Estimating root biomass in Salix viminalis×Salix schwerinii cultivar "Olof" using the electrical capacitance method[J]. Plant Biosyst, 2010, 144(2): 479-483.
    [37]
    Chloupek O, Dostál V, Středa T, Psota V, Dvorackova O. Drought tolerance of barley varieties in relation to their root system size[J]. Plant Br, 2010, 129(6): 630-636.
    [38]
    Preston GM, McBride RA, Bryan J, Candido M. Estimating root mass in young hybrid poplar trees using the electrical capacitance method[J]. Agro Syst, 2004, 60(3): 305-309.
    [39]
    Chloupek O. Evaluation of the size of a plant's root system using its electrical capacitance[J]. Plant Soil, 1977, 48(2): 525-532.
    [39]
    Zhang G, Wang AF. Research advances in mathematical model of coniferous trees cold hardiness[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1610-1616.
    [40]
    Bengough AG, McKenzie BM, Hallet PD, Dietrich RC, White PJ, Jones HG. Physical Limitations to Root Growth: Screening, Scaling and Reality[M]. Proceedings of 7th ISRR Symposium on Roots: Research and Applications (RootRAP, Austria). 2009: 174.
    [41]
    Tsukahara K, Yamane K, Yamaki Y, Honjo H. A nondestructive method for estimating the root mass of young peach trees after root pruning using electrical capacitance measurements[J]. J Agri Met, 2009, 65: 11-20.
    [42]
    Ellis T, Murray W, Kavalieris L. Electrical capacitance of bean root systems was related to tissue density-a test for the dalton model[J]. Plant Soil, 2013, 366(1-2): 575-584.
    [43]
    Aulen M, Shipley B. Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species[J]. Plant Soil, 2012, 355(1-2): 41-49.
    [44]
    Dietrich RC, Bengough AG, Jones HG, White PJ. Can root electrical capacitance be used to predict root mass in soil[J]. Ann Bot, 112(2): 457-464.
    [45]
    Ozier-Lafontaine H, Bajazet T. Analysis of root growth by impedance spectroscopy [J]. Plant Soil, 2005, 277(1-2): 299-313.
    [46]
    Butler AJ, Barbier N, Čermák J, Koller J, Thornily C, McEvoy C, Nicoll B, Perks MP, Grace J, Meir P. Estimates and relationships between aboveground and belowground resource exchange surface areas in a Sitka spruce managed forest[J]. Tree Physiol, 2010, 30(6): 705-714.
    [47]
    Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P. An appraisal of the electrical resistance method for assessing root surface area[J]. J Exp Bot, 2010, 61(9): 2491-2497.
    [48]
    Repo T, Laukkanen J, Silvennoinen R. Measurement of the tree root growth using electrical impedance spectroscopy[J]. Silva Fennica, 2005, 39(2): 159-166.
    [49]
    Urban J, Bequet R, Mainiero R. Assessing the applicability of the earth impedance method for in situ studies of tree root systems[J]. J Exp Bot, 2011, 62(6): 1857-1869.
    [50]
    张正, 刘国彬, 李强, 脱登峰. 电容法估测植物根系生物量研究[J]. 草地学报, 2014, 32(2): 383-386.
    [51]
    Cseresnyés I, Takács T, Végh KR, Anton A, Rajkai K. Electrical impedance and capacitance method: A new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize[J]. Eur J Soil Biol, 2013, 54: 25-31.
    [52]
    张钢. 国外木本植物抗寒性测定方法综述[J]. 世界林业研究, 2005, 18(5): 14-20.
    [53]
    孟昱, 邸葆, 张钢, 封新国, 徐成立, 田军. 涝渍胁迫下白桦根系可溶性糖和淀粉含量与电阻抗的相关性分析[J]. 生物物理学报, 2013, 29(6): 450-460.

    Meng Y, Di B, Zhang G, Feng XG, Xu CL, Tian J. The correlation analysis of soluble sugar and starch contents with electrical impedance in Betula platphylla Suk. roots under waterlogging and flooding stresses[J]. Acta Biophysica Sinica, 2013, 29(6): 450-460.
    [58]
    Zhang Z, Liu GB, Li Q, Tuo DF. Estimating plant root biomass using the electrical capacitance method[J]. Acta Agrestia Sinica, 2014, 32(2): 383-386.
    [61]
    Zhang G. Review on methods for measuring frost hardiness in woody plants abroad[J]. World Forestry Research, 2005, 18(5): 14-20.
  • Related Articles

    [1]Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781
    [2]HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543.
    [3]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [4]CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21.
    [5]TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100.
    [6]Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122.
    [7]Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188.
    [8]Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214.
    [9]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [10]Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130.
  • Cited by

    Periodical cited type(7)

    1. 蔡焕满,吴素美,吴逸卿,熊艳云,林阳,毛志斌,吴友贵,吴秋丰. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征. 浙江林业科技. 2024(01): 1-7 .
    2. 黎毅,戴克元,唐国平,杜建会,陈桃,江南,牛香豫,余扬波. 基于遥感生态指数的广东石门台国家级自然保护区生态环境质量评价. 热带地理. 2024(03): 429-441 .
    3. 邹艳丽,王倩,丁巧玲,周奇,刘忠成,陈志晖,廖文波. 罗霄山脉甜槠(Castanopsis eyrei)群落的纬度地带性研究. 生态科学. 2023(06): 93-104 .
    4. 张银,吴浩,徐耀粘,王世彤,杨腾,李晶,吕林玉,周天阳,肖之强,王建,江明喜. 湖北九宫山甜槠群落结构与优势种的空间分布格局研究. 长江流域资源与环境. 2021(05): 1130-1140 .
    5. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .
    6. 周茹君,曾颖,梁小翠,闫文德,张翔. 湖南芦头林场甜槠天然林群落结构特征. 湖南林业科技. 2020(04): 85-91 .
    7. 杨礼旦,陈应强,杨学成. 贵州台江县野生木本资源及其利用分析. 山地农业生物学报. 2020(05): 67-77 .

    Other cited types(1)

Catalog

    Article views (1062) PDF downloads (1602) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return