Advance Search
XU De-Hong, TAN Chao-Yang. Gene Cloning and Prokaryotic Expression of Glycosyltransferase from Leonurus heterophyllus Sweet(英文稿)[J]. Plant Science Journal, 2016, 34(3): 397-405. DOI: 10.11913/PSJ.2095-0837.2016.70001
Citation: XU De-Hong, TAN Chao-Yang. Gene Cloning and Prokaryotic Expression of Glycosyltransferase from Leonurus heterophyllus Sweet(英文稿)[J]. Plant Science Journal, 2016, 34(3): 397-405. DOI: 10.11913/PSJ.2095-0837.2016.70001

Gene Cloning and Prokaryotic Expression of Glycosyltransferase from Leonurus heterophyllus Sweet(英文稿)

Funds: 

This work was supported by grants from the Construct Program of the Key Discipline of Chinese Pharmacy in Hunan Province ([2011]76), Scientific Research Fund of Hunan Provincial Education Department(13C670), and the Youth Research Fund of Hunan University of Chinese Medicine (99820001-93).

undefined

undefined

More Information
  • Received Date: October 09, 2015
  • Revised Date: November 11, 2015
  • Available Online: October 31, 2022
  • Published Date: June 27, 2016
  • A glycosyltransferase gene (LhsUGT) was cloned from Leonurus heterophyllus Sweet using rapid amplification of cDNA ends (RACE). The full length cDNA of LhsUGT was 1562 bp, with a 1368 bp open reading frame (ORF) encoding a 455 amino-acid protein (LhsUGT) and a molecular weight of 50.47 kD and isoelectric point of 5.52. By bioinformatics analysis, three secondary structures were discovered in LhsUGT, including 43.1% helix, 17.5% β-sheet and 39.4% random coil structural elements. There was a conserved PSPG domain at the C-terminal of LhsUGT, demonstrating that the enzyme encoded by LhsUGT belonged to the glucosyltransferase super family. Homology analysis by BLAST showed that the sequence similarities of glycosyltransferase between L. heterophyllus and other plants were 26.4% - 68.0%. Phylogenetic tree analysis indicated that LhsUGT might glycosylate simple phenolic compounds as it was found to be clustered with group L in Arabidopsis thaliana. SDS-PAGE analysis showed recombinant LhsUGT with approximate molecular weight of 69 kD was successfully expressed by a prokaryotic expression system, which contained His tags of 17.9 kD at the N-terminal and reached maximum expression level until 5 h after induction by IPTG (Isopropyl β-D-1-thiogalactopyranoside). The results in the study will lay the foundation for future studies on the biological functions of LhsUGT by enzymatic reactions in vitro.
  • [1]
    He CA, Yu XY, Meng QX, Wang YM. Research in structural modification of biotransformation of natural drugs [J]. Nat Prod Res Dev, 2012, 24(6): 843-847.
    [2]
    Schwab W. Metabolome diversity: too few genes, too many metabolites? [J]. Phytochemistry, 2003, 62(6): 837-849.
    [3]
    Ji XN, He F, Duan CQ, Wang J. Recent progress in biochemical properties and functions of UDP-glycosyltransfe-rase during plant secondary metabolism [J]. Food Sci, 2013, 34(9): 316-323.
    [4]
    Gachon CM, Langlois-Meurinne M, SaindrenanP. Plant secondary metabolism glycosyltransferases: the emerging functional analysis [J]. Trends Plant Sci, 2005, 10(11): 542-549.
    [5]
    Zhou WL, Chen G, Wang YH, Li L. Plant glycosyltransfe-rases and its application in metabolic engineering[J]. Biotechnology, 2008, 19(6): 95-97.
    [6]
    Wang J, Hou BK. Glycosylation and glycosyltransferase of small molecular compounds of plant [J]. Plant Physiology Communications, 2008, 44(5): 997-1003.
    [7]
    Bowles DJ, Isayenkova J, Lim EK, Poppenberger B. Glycosyltransferases: managers of small molecules [J]. Curr Opin Plant Biol, 2005, 8(3): 254-263.
    [8]
    Ross J, Li Y, Lim EK, Bowles DJ. Higher plant glycosyltransferases [J]. Genome Biol, 2001.doi: 10.1186/gb-2001-2-2-reviews3004.
    [9]
    Sheng LH, Wang SL. Research progress on Leonurus heterophyllus Sweet [J]. Journal of Anhui Agricultural Sciences, 2010, 38(8): 4414-4416.
    [10]
    Tan CY, Peng F, Yu J, Luo YL, Xu DH, Meng L. A cultivation method and application of plants containing salidroside[P]. China: 201310061826, 2013-08-27.
    [11]
    Bai YF, Bi HP, Zhuang YB, LiuCh, Cai T, Liu XN, Zhang XL, Tao L, Ma YH. Production of salidroside in metabolically engineered Escherichia coli [DB/OL]. Sci Rep, 2014, 4: 6640. DOI: 10.1038]/srep06640.
    [12]
    Lan XZ, Chang K, Zeng LJ, Liu XQ, Qiu F, Zheng WL, Quan H, Liao ZH, Chen M, Huang WL, Liu WH, Wang Q. Engineering salidroside biosynthetic pathway in hairyroot cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase [DB/OL]. PLoS ONE, 8(10): e75459. doi: 10.1371]/journal.pone.0075459.
    [13]
    Shi LL, Wang L, Zhang YX, Liu YJ. Approaches on biosynthesis of salidroside and its key metabolic enzymes [J]. Chinese Bulletin of Life Sciences, 2008, 20(2): 287-290.
    [14]
    Zhao TB, ZhaoXQ, Chang ZJ, Zhao W, Sun P, Xu SX, Song YL. Rapid cloning homologous cDNA from different species [J]. Biotechnology Bulletin, 2003(5): 13-14.
    [15]
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227(5259): 680-685.
    [16]
    Li Y, Baldauf S, Lim EK, Bowles DJ. Phylogenetic ana-lysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana [J]. J Biol Chem, 2001, 276(6): 4338-4343.
    [17]
    Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land [J]. Plant J, 2012, 69(6): 1030-1042.
    [18]
    Wang YL, Huang WJ, Wang Y. Cloning and expression analysis of the EsUF[STXFX]3[STXFZ]GT gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim. [J]. Plant Science Journal, 2014, 32(6): 602-611.
    [19]
    Shao H, He XZ, Achnine L, Blount JW, Dixon RA, Wang XQ. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula [J]. Plant Cell, 2005, 17(11): 3141-3154.
    [20]
    Li LN, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang XQ. Crystal structure of Medicago truncatula UGT85H2-insights into the structural basis of a multifunctional (iso) flavonoid glycosyltransferase [J]. J Mol Biol, 2007, 370(5): 951-963.
    [21]
    Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang XQ. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso) flavonoids [J]. J Mol Biol, 2009, 392(5): 1292-1302.
    [22]
    Kubo A, Arai Y, Nagashima S, Yoshikawa T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation [J]. Arch Biochem Biophys, 2004, 429(2): 198-203.
    [23]
    Nishimura Y, Tokimatsu T, Kotera M. Genome-wide ana-lysis of plant UGT family based on sequence and substrate information [J]. Genmone Inform, 2010, 24: 127-138.
    [24]
    Lee HI, Raskin I. Purification, cloning, and expression of a pathogen inducible UDP-glucose: Salicylic acid gluco-syltransferase from tobacco [J]. J Biol Chem, 1999, 274(51): 36637-36642.
    [25]
    Hefner T, Arend J, Warzecha H, Siems K, Stöckigt J. Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics [J]. Bioorg Med Chem, 2002, 10(6): 1731-41.
    [26]
    YU HS. Cloning and characterization of glycosyltransfe-rases cDNA from Rhodioa sachalinesis and establishment of transgenic hairy root cultures [D]. Changchun: Jilin university, 2008.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (1087) PDF downloads (1099) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return