Advance Search
Fu Chun-Lin, Dai Xiao-Kang, Li Xiao-Yan, Liu Xing. Screening cpDNA markers and preliminary study on the genetic diversity of Hydrilla verticillata from China[J]. Plant Science Journal, 2017, 35(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2017.10087
Citation: Fu Chun-Lin, Dai Xiao-Kang, Li Xiao-Yan, Liu Xing. Screening cpDNA markers and preliminary study on the genetic diversity of Hydrilla verticillata from China[J]. Plant Science Journal, 2017, 35(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2017.10087

Screening cpDNA markers and preliminary study on the genetic diversity of Hydrilla verticillata from China

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31170203).

More Information
  • Received Date: May 10, 2016
  • Available Online: October 31, 2022
  • Published Date: February 27, 2017
  • The genetic characteristics of Hydrilla verticillata (L.f.) Royle were analyzed with chloroplast DNA (cpDNA) markers. Out of 18 candidate pairs, three effective molecular markers (trnL-trnF, trnH-psbA, RPL16) were screened, providing the molecular basis for further research. In total, 12 haplotypes were discovered in 40 samples of H. verticillata, with 135 mutation sites and haplotype diversity of 0.9064. Haplotype-4 was found in regions SXHZ and YY, which were geographically distant. In addition, 85.79% of total variation existed between populations. Through asexual reproduction, H. verticillata could carry out rapid expansion. Geographical separation and various environments between populations have likely resulted in low gene flow. In addition, the genetic structure of H. verticillata has been profoundly affected by founder effect and genetic drift.
  • [1]
    Balciunas J, Grodowitz M, Cofrancesco A, Shearer J, Van Dreische R, Lyon B, Hoddle M, Reardon R. Biological control of invasive plants in the eastern United States[J]. Hydrilla, 2002:91-114.
    [2]
    文明, 盛哲, 林亲众. 蛋白质新资源——黑藻的研究:Ⅰ[STXFZ]. 黑藻生物学特性及营养成分的分析[J]. 湖南农业大学学报, 1994(5):457-463.

    Wen M, Sheng Z, Lin QZ. Study of Hydrilla verticillata(L. f.)Royle as protein resourceⅠ[STXFZ]. Analysis of the biological characters and nutrition elements of Hydrilla verticillata(L.f.)Royle[J]. Journal of Hunan Agricultural College, 1994(5):457-463.
    [3]
    Barrat-Segretain MH, Bornette G, Hering-Vilas-Bôas A. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats[J]. Aquat Bot, 1998, 60(3):201-211.
    [4]
    彭东升, 孙祥钟, 王徽勤. 武汉轮叶黑藻属的细胞分类学初步研究[J]. 武汉大学学报:自然科学版, 1983(2):103-109.

    Peng DS, Sun XZ, Wang WQ. A preliminary study on the cyto-taxonomy of Hydrilla in Wuhan[J]. Journal of Wuhan University:Natural Science Edition, 1983(2):103-109.
    [5]
    施国新, 杜开和, 解凯彬,丁小余, 常福辰, 陈国祥. 汞、镉污染对黑藻叶细胞伤害的超微结构研究[J]. 植物学报, 2000, 42(4):373-378.

    Shi GX, Du KH, Jie KB, Ding XY, Chang FC, Chen GX. Ultrastructural study of leaf cells damaged from Hg2+ and Cd2+ pollution in Hydrilla verticillata[J]. Chinese Bulletin of Botany, 2000, 42(4):373-378.
    [6]
    Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK. Phytochelatins and antioxidant systems respond diffe-rentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle[J]. Environ Sci Technol, 2007, 41(8):2930-6.
    [7]
    Chen LY, Chen JM, Gituru RW, Temam TD, Wang QF. Generic phylogeny and historical biogeography of Alismata-ceae, inferred from multiple DNA sequences[J]. Mol Phylogenet Evol, 2012, 63(2):407-16.
    [8]
    Les DH, Moody ML, Soros CL. A reappraisal of phylogenetic relationships in the monocotyledon family Hydrocharitaceae(Alismatidae)[J]. Aliso, 2006, 22:211-230.
    [9]
    Zhu J, Yu D, Xu X. The phylogeographic structure of Hydrilla verticillata (Hydrocharitaceae) in China and its implications for the biogeographic history of this worldwide-distributed submerged macrophyte[J]. BMC Evol Biol, 2015, 15(1):1-11.
    [10]
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18(22):6531-6535.
    [11]
    白伟宁, 张大勇. 植物亲缘地理学的研究现状与发展趋势[J]. 生命科学, 2014, 26(2):125-137.

    Bai WN, Zhang DY. Current status and future directions in plant phylogeography[J]. Chinese Bulletin of Life Scien-ces, 2014, (2):125-137.
    [12]
    Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
    [13]
    Chenna R, Sugawar H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
    [14]
    Lewis PO, Kumar S, Tamura K. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(4):2725-2729.
    [15]
    Taberlet P, Gielly L, Pautou G, Bouvet J. Universal pri-mers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5):1105-1109.
    [16]
    Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants[J]. Mol Ecol, 1995, 4(1):129-134.
    [17]
    Mu LC, Wang L, Yao L, Hao B, Luo Q. Application of petG-trnP sequence to systematic study of Chinese Cupressus species[J]. Front Biol China, 2006, 1(4):349-352.
    [18]
    Nakayama H, Fukushima K, Fukuda T, Yokoyama J, Kimura S. Molecular phylogeny determined using chloroplast DNA inferred a new phylogenetic relationship of Rorippa aquatic (Eaton) EJ Palmer & Steyermark (Brassicaceae)-lake cress[J]. Am J Plant Sci, 2014, 5(1):48-54.
    [19]
    Jordan WC, Courtney MW, Neigel JE. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds (Lemna-ceae)[J]. Am J Bot, 1996, 83(4):430-439.
    [20]
    Barkman TJ, Simpson BB. Hybrid origin and parentage of Dendrochilum acuiferum (Orchidaceae) inferred in a phylogenetic context using nuclear and plastid DNA sequence data[J]. Syst Bot, 2002, 27(2):209-220.
    [21]
    Tao S, Crawford DJ, Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae)[J]. Am J Bot, 1997, 84(8):1120-1136.
    [22]
    Shaw J, Lickey E, Schilling E, Small RL. Comparison of whole chloroplast genome sequences to choose nonco-ding regions for phylogenetic studies in angiosperms:the tortoise and the hareⅢ[STXFZ] [J]. Am J Bot, 2007, 94(3):275-288.
    [23]
    Jeanson ML, Labat JN, Little DP. DNA barcoding:a new tool for palm taxonomists?[J]. Ann Bot, 2011, 108(8):1445-1451.
    [24]
    Dong WP, Liu J, Yu J, Wang L, Zhou S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding[J]. PLoS One, 2012, 7(4):e35071.
    [25]
    Nei M. Molecular Evolutionary Genetics[M]. New York:Columbia University Press, 1987.
    [26]
    Sheeja G, Jyotsna S, Yadon VL. Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms[J]. Am J Bot, 2009, 96(96):2022-2030.
    [27]
    Magalhaes HM, Pinheiro LR, Silveira FA, Menezes MD, Santos JBD, Resende LV, Pasqual M. Genetic diversity of endangered populations of Butia capitata:implications for conservation[J]. Afr J Biotechnol, 2015, 14(11):888-900.
    [28]
    Chen J, Du Z, Yuan Y, Wang QF. Phylogeography of an alpine aquatic herb Ranunculus bungei (Ranunculaceae) on the Qinghai-Tibet Plateau[J]. J Syst Evol, 2014, 52(3):313-325.
    [29]
    Rebernig CA, Schneeweiss GM, Bardy KE, Sch nswetter P, Villaseñor JL. Multiple Pleistocene refugia and Ho-locene range expansion of an abundant southwestern American desert plant species (Melampodium leucanthum, Asteraceae)[J]. Mol Ecol, 2010, 19(16):3421-3443.
    [30]
    Langeland KA, Sutton DL. Regrowth of Hydrilla from axillary buds[J]. J Aquat Plant Manage, 1980, 18:27-29.
    [31]
    Andreakis N, Procaccini G, Maggs C, Kooistra W. Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity[J]. Mol Ecol, 2007, 16(11):2285-2299.
    [32]
    Koga K, Kadono Y, Setoguchi H. Phylogeography of Ja-panese water crowfoot based on chloroplast DNA haplotypes[J]. Aquat Bot, 2008, 89(1):1-8.
    [33]
    Chen JM, Du ZY, Sun SS, Gituru RW, Wang QF. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas[J]. PLoS One, 2013, 8(4):e60948.
    [34]
    Wang ZW, Chen ST, Nie ZL, Zhang JW, Zhou Z, Deng T, Sun H. Climatic factors drive population divergence and demography:insights based on the phylogeography of a riparian plant species endemic to the Hengduan mountains and adjacent regions[J]. PLoS One, 2015, 10(12):e0145014.
    [35]
    李俊清. 植物遗传多样性保护及其分子生物学研究方法[J]. 生态学杂志, 1994, 13(6):27-33.

    Li JQ. Conservation of plant genetic diversity and related molecular biological techniques[J]. Chinese Jounral of Ecology, 1994, 13(6):27-33.
    [36]
    Hamrick JL, Godt MJW. Allozyme diversity in plant species[M]//Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland:Sinauer Associates Inc, 1989:43-63.
    [37]
    Madeira PT, Coetzee JA, Center TD, White EE, Tipping PW. The origin of Hydrilla verticillata recently discovered at a south African dam[J]. Aquat Bot, 2007, 87(2):176-180.
  • Related Articles

    [1]Liu Fenfen, Mo Liangtuan, Ou Guoteng, Nie Yimei, Niu Tao, Huang Qinjun. Genetic diversity and genetic structure analysis of wild Chinese Rosa roxburghii Tratt. germplasm resources[J]. Plant Science Journal, 2024, 42(3): 350-358. DOI: 10.11913/PSJ.2095-0837.23248
    [2]ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
    [3]TAO Ai-Fen, QI Jian-Min, SU Jian-Guang, FANG Ping-Ping, LIN Li-Hui, XU Jian-Tang, WU Jian-Mei, LIN Pei-Qing. Analysis of Genetic Diversity of Jute (Corchorus L.) Germplasm Revealed by SRAP[J]. Plant Science Journal, 2012, (2): 178-187. DOI: 10.3724/SP.J.1142.2012.20178
    [4]MA Rui-Jun, LU Jian-Ying. Genetic Diversity of Ground Cover Plant Potentilla anserina L.[J]. Plant Science Journal, 2010, 28(4): 473-479.
    [5]QIN Yong-Yan, WANG Yi-Ling, ZHANG Qin-Di, BI Run-Cheng, YAN Gui-Qin. Analysis on the Population Genetic Diversity of an Endangered Plant (Elaeagnus mollis) by SSR Markers[J]. Plant Science Journal, 2010, 28(4): 466-472.
    [6]ZHOU Yuan, GAO Lei, WANG Zhi-Wei, WANG Ting. Application of Molecular Marker Techniques in Genetic Diversity of Pteridophytes[J]. Plant Science Journal, 2009, 27(6): 667-673.
    [7]REN Xiao-Ping, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong, WANG Sheng-Yu, LI Dong. Genetic Diversity of Arachis hypogaea var.hirsute in Peanut[J]. Plant Science Journal, 2007, 25(4): 401-405.
    [8]XIA Jing, GUO You-Hao. ISSR Analysis for Genetic Diversity of Pedicularis dunniana[J]. Plant Science Journal, 2006, 24(6): 565-568.
    [9]BIN Xiao-Yun, TANG Shao-Qing, ZHOU Jun-Ya, SONG Hong-Tao, LI Zun-Yi. ISSR Analysis on Genetic Diversity of Camellia nitidissima Chi (Theaceae) in China[J]. Plant Science Journal, 2005, 23(1): 20-26.
    [10]CHENG Zhong-Ping, CHEN Zhi-Wei, HU Chun-Gen, DENG Xiu-Xin. Study on Genetic Diversity of Amygdalus persica Based on RAPD Markers[J]. Plant Science Journal, 2002, 20(2): 89-99.

Catalog

    Article views (1139) PDF downloads (1107) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return