Citation: | Liu Yang, Fu Wen-Long, Cao Yu, Li Wei. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 2017, 35(3): 444-451. DOI: 10.11913/PSJ.2095-0837.2017.30444 |
[1] |
Clements FE. Nature and structure of the climax[J]. J Ecol, 1936, 24:252-284.
|
[2] |
Tansley AG. British ecology during the past quarter-century:the plant community and the ecosystem[J]. J Ecol, 1939, 27(5):513-530.
|
[3] |
Keddy PA. Assembly and response rules:two goals for predictive community ecology[J]. J Veg Sci, 1992, 2(3):157-164.
|
[4] |
牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云. 部落构建的中性理论和生态位理论[J]. 生物多样性, 2009,17(6):579-593.
Niu KC, Liu YN, Shen ZH, He FL, Fang JY. Community assembly:the relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6):579-593.
|
[5] |
Wright IJ, Reich PB, Westoby M, Ackerly, DD, Baruch, Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets V, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.
|
[6] |
Cornwell WK, Ackerly DD. A link between plant traits and abundance:evidence from coastal California woody plants[J]. J Ecol, 2010, 98(4):814-821.
|
[7] |
Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant Soil, 1998, 199(199):213-227.
|
[8] |
Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322:580-582.
|
[9] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M1, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG33, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H1, Zimmerman JK, Zimmermann NE, Westoby M. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529:204-207.
|
[10] |
孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150-165.
Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1):150-165.
|
[11] |
杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702-713.
Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM. Leaf and twig functional traits of woody plants and their relationships with environmental change:A review[J]. Chinese Journal of Ecology, 2012, 31(3):702-713.
|
[12] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015(4):325-339.
Liu XJ, Ma KP. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4):325-339.
|
[13] |
雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇. 植物功能性状、功能多样性与生态系统功能:进展与展望[J]. 生物多样性, 2016, 24(8):922-931.
Lei Jl, Kong Dl, Li XM, Zhou ZX, Li GY. Plant functional traits, functional diversity, and ecosystem functioning:current knowledge and perspectives[J]. Biodiversity Science, 2016, 24(8):922-931.
|
[14] |
Scheffer M. Ecology of Shallow Lakes[M]. Springer Science & Business Media, 1998.
|
[15] |
Yarrow M, Marín VH, Finlayson M, Tironi A, Delgado LE, Fischer F. The ecology of Egeria densa Planchón (Liliopsida:Alismatales):a wetland ecosystem engineer?[J]. Rev Chil Hist Nat, 2009, 82(2):299-313.
|
[16] |
Dhote S, Dixit S. Water quality improvement through macrophytes-a review[J]. Environ Monit Assess, 2009, 152(1-4):149-153.
|
[17] |
Gao J, Zhang W, Xiong Z, Zhang J, Mba FO. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes[J]. Desalination, 2009, 242(1-3):193-204.
|
[18] |
Perrow MR, Jowitt AJD, Stansfield JH, Phillips GL. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration[J]. Hydrobiologia, 1999, 395-396:199-210.
|
[19] |
Sagrario G, Losángeles MD, Balseiro E, Ituarte R, Spivak E. Macrophytes as refuge or risky area for zooplankton:a balance set by littoral predacious macroinvertebrates[J]. Freshwater Biol, 2009, 54(5):1042-1053.
|
[20] |
Dillon RT. The Ecology of Freshwater Molluscs[M]. Cambridge:Cambridge University Press, 2000.
|
[21] |
Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu ZW, Meester LD, Paerl H, Scheffer M. Allied attack:climate change and eutrophication[J]. Inland Waters, 2011, 1(2):101-105.
|
[22] |
Barko JW, James WF. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension[M]//Jeppesen E, Sondergaard M, Christofferson K eds. The Structuring Role of Submerged Macrophytes in Lakes. New York:Springer,1998:197-214.
|
[23] |
Li EH, Li W, Liu GH, Yuan LY. The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake[J]. Aquat Bot, 2008, 88(2):121-126.
|
[24] |
Reddy KR, Patrick WH, Lindau CW. Nitrification-denitrification at the plant root-sediment interface in wetlands[J]. Limnol Oceanogra, 1989, 34(6):1004-1013.
|
[25] |
Sand-Jensen K, Stokholm H. Oxygen release from roots of submerged aquatic macrophytes[J]. Oikos, 1982, 38(3):349-354.
|
[26] |
Weisner SEB. Influence of macrophytes on nitrate removal in wetlands[J]. Ambio A Journal of the Human Environment, 1994, 23(6):363-366.
|
[27] |
K rner S, Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes[J]. J.Phys, 2002, 38(5):862-871.
|
[28] |
Donk EV, Bund WJVD. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms[J]. Aquat Bot, 2002, 72(3-4):261-274.
|
[29] |
Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR. Impact of submerged macrophytes on fish-zooplankton interactions in lakes[J]. Ecological Studies, 1998, 131:91-114.
|
[30] |
Cook CDK, Gut BJ, Rix EM, Schneller J, Seitz M. Water Plants of the World; a manual for the identification of the genera of freshwater macrophytes[M]. Hague:The Pitman Press, 1974.
|
[31] |
Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. Global diversity of aquatic macrophytes in freshwater[J]. Hydrobiologia, 2008, 595(1):9-26.
|
[32] |
Bennett AC, Mcdowell NG, Allen CD, Anderson-Teixeira KJ. Larger trees suffer most during drought in forests worldwide[J]. Nat Plants, 2015, 1(10):15139.
|
[33] |
Maberly SC. The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs:An evolutionary and biogeochemical perspective[J]. Aquat Bot, 2014, 118:4-13.
|
[34] |
Wetzel RA. Comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake[J]. Int Rev ges Hydro Hydro, 1964, 49(1):1-61.
|
[35] |
Li W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants[J]. Aquat Bot, 2014, 118:62-70.
|
[36] |
Klimešová J, Tackenberg O, Herben T. Herbs are different:clonal and bud bank traits can matter more than leaf-height-seed traits[J]. New Phytol, 2016, 210(1):13-17.
|
[37] |
Fu H, Zhong J, Yuan G, Ni L, Xie P, Cao T. Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake[J]. Ecol Evol, 2014, 4(9):1516-1523.
|
[38] |
Fu H, Zhong J, Yuan G, Xie P, Guo L, Zhang X, Xu J, Li Z, Li W, Zhang M, Cao T, Ni L.Trait-based community assembly of aquatic macrophytes along a water depth gradient in a freshwater lake[J]. Freshwater Biol, 2014, 59(12):2462-2471.
|
[39] |
Fu H, Zhong J, Yuan G, Guo C, Qian L, Wei Z, Xu J, Ni L, Xie P, Cao T. Predicting changes in macrophyte community structure from functional traits in a freshwater lake:a test of maximum entropy model[J]. PloS One, 2015, 10(7):e0131630
|
[40] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, B nisch G, Westoby M, Poorter H, Reich PB, Moles AT1, Dickie J, Gillison AN, Zanne AE, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD. The global spectrum of plant form and function[J]. Nature, 2016, 529:167171.
|
[41] |
Grime JP. Vegetation classification by reference to strategies[J]. Nature, 1974, 250(5461):26-31.
|
[42] |
Vesk PA. Plant size and resprouting ability:trading tolerance and avoidance of damage?[J]. J Ecol, 2006, 94(94):1027-1034.
|
[43] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506(7486):89-92.
|
[44] |
Cornelissen JHC, Lavorel S, Garnier E, Buchmann N, Gurvich DE, Reich PB, van der Heijden MGA, Pausas JG, Poorter H. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
|
[45] |
Maberly SC, Dhn S. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983, 71(3):705-724.
|
[46] |
Madsen TV, Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes[J]. Aquat Bot, 1991, 41(1-3):5-40.
|
[47] |
Keeley JE. CAM photosynthesis in submerged aquatic plants[J]. Bot Rev, 1998, 64(2):121-175.
|
[48] |
Yin L, Li W, Madsen TV, Maberly SC, Bowes G. Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes[J]. Aquat Bot, 2016.in press.
|
[49] |
Rietz GED. The fundamental units of biological taxonomy[J]. Svensk Bot Tidskt, 1930, 24:333-428.
|
[50] |
李伟, 钟扬. 水生植被研究的理论与方法[M]. 武汉:华中师范大学出版社, 1992.
Li W,Zhong Y. The Theory and Method for the Research of Aquatic Plants[M]. Wuhan:Huazhong Normal University Press, 1992.
|
[51] |
Vis C, Hudon C, Carignan R. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism[J]. Can J Fish Aquat Sci, 2006, 63(5):1014-1026.
|
[52] |
Cano MG, Casco MA, Claps MC. Vertical distribution of epiphyton biomass and diversity in a shallow lake during contrasting ecosystem regimes[J]. Aquat Bot, 2013, 110(110):38-47.
|
[53] |
Blindow I, Hargeby A, Hilt S. Facilitation of clear-water conditions in shallow lakes by macrophytes:differences between charophyte and angiosperm dominance[J]. Hydrobiologia, 2014, 737(1):99-110.
|
[54] |
Xia C, Yu D, Wang Z, Xie D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecol Eng, 2014, 70(5):406-413.
|
[55] |
Wang Z, Xia C, Yu D, Wu Z. Low-temperature induced leaf elements accumulation in aquatic macrophytes across Tibetan Plateau[J]. Ecol Eng, 2015, 75(6):1-8.
|
[56] |
Xing W, Wu H, Shi Q, Hao, B, Liu, H, Wang Z, Liu G. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China)[J]. Sci Rep, 2015, 5:10186.
|
[57] |
Strand JA, Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. J Ecol, 2001, 89(2):166-175.
|
[58] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies:some leading dimensions of variation between species[J]. Annu Rev Ecol Syst, 2002, 33(1):125-159.
|
[59] |
Diaz S, Cabido M. Vive la difference:plant functional diversity matters to ecosystem processes[J]. Trends Ecol Evol, 2001, 16(11):646-655.
|
[60] |
Xiao K, Dan YU, Wang J. Habitat selection in spatially heterogeneous environments:a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis[J]. Freshwater Biol, 2006, 51(8):1552-1559.
|
[61] |
Xiao K, Yu D, Xu X, Xiong W. Benefits of clonal integration between interconnected ramets of Vallisneria spiralis, in heterogeneous light environments[J]. Aquat Bot, 2007, 86(1):76-82.
|
[62] |
Wolfer SR, Straile D. To share or not to share:clonal integration in a submerged macrophyte in response to light stress[J]. Hydrobiologia, 2012, 684(1):261-269.
|
[63] |
Ackerly DD, Cornwell WK. A trait-based approach to community assembly:partitioning of species trait values into within-and among-community components[J]. Ecol Lett, 2007, 10(2):135-145.
|
[64] |
Shipley B, Laughlin DC, Sonnier G, Sonnier G, Otfinowski R. A strong test of a maximum entropy model of trait-based community assembly[J]. Ecology, 2011, 92(2):507-517.
|
[65] |
Baattrup-Pedersen A, G the E, Larsen SE, O'Hare M, Birk S, Riis T, Friberg N. Plant trait characteristics vary with size and eutrophication in European lowland streams[J]. J Appl Ecol, 2015, 52(6):1617-1628.
|
[66] |
Dan FBF, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships[J]. Ecology, 2011, 92(8):1573-1581.
|
[67] |
Schittko C, Hawa M, Wurst S. Using a multi-trait approach to manipulate plant functional diversity in a biodiversity-ecosystem function experiment[J]. PloS One, 2014, 9(6):e99065.
|
[68] |
Petchey OL, Gaston KJ. Functional diversity:back to basics and looking forward[J]. Ecol Lett, 2006, 9(6):741-758.
|
[69] |
Chen LY, Grimm GW, Wang QF, Renner SS. A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae(Alismatales)[J]. Mol Phylogenet Evol, 2015, 82:111-117.
|
[70] |
张悦恬,张光富,李跃,李玲,俞立鹏. 长江三角洲地区水生维管植物的多样性[J]. 植物科学学报, 2012, 30(3):238-249.
Zhang YT, Zhang GF, Li Y, Li L, Yu LP. Diversity of aquatic vascular plants in Yangtze River[J]. Plant Science Journal, 2012, 30(3):238-249.
|
[71] |
Chen YY, Fan XR, Li Z, Li W, Huang WM. Low level of genetic variation and restricted gene flow in water lily Nymphaea tetragona populations from the Amur River[J]. Aquat Bot, 2016.doi: 10.1016/j.aquabot.2016.10.003[BFY]
|
[72] |
Chen Y, Li X, Yin L, Cheng YU,Li W. Genetic diversity and migration patterns of the aquatic macrophyte Potamogeton malaianus in a potamo-lacustrine system[J]. Freshwater Biol, 2009, 54(6):1178-1188.
|
[73] |
Chen LY, Chen JM, Gituru RW, Wang QF. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae[J]. BMC Evol Biol, 2012, 12(1):1-12.
|
[1] | Chen Changjie, Miao Yuhuan, Ma Yuyang, Xiao Chuang, Liu Dahui. Identification of Artemisia argyi Lévl. et Van. and seven closely related species based on morphology and volatile composition[J]. Plant Science Journal, 2024, 42(4): 509-518. DOI: 10.11913/PSJ.2095-0837.23316 |
[2] | Zhang Yunluo, Wu Yingmei, Liu Yifei, Hu Zhigang, Gou Junbo. Recent progress in medicinal plant transformation and genome editing[J]. Plant Science Journal, 2024, 42(2): 242-253. DOI: 10.11913/PSJ.2095-0837.23186 |
[3] | Long Bing-Hong, Jiang Xiang-Hui, Song Rong, Li Sheng-Hua, Xiao Long-Qian, Yi Zi-Li, She Chao-Wen. Application of DNA barcodes in identification and genetic diversity analysis of medicinal plants of the genus Polygonatum[J]. Plant Science Journal, 2022, 40(4): 533-543. DOI: 10.11913/PSJ.2095-0837.2022.40533 |
[4] | Lü Ding-Hao, Liu An-Li, Xu Wen-Fen, He Shun-Zhi. Study on the genus Aspidistra based on DNA barcoding[J]. Plant Science Journal, 2018, 36(6): 784-789. DOI: 10.11913/PSJ.2095-0837.2018.60784 |
[5] | Lei Mei-Yan, Zhang Na-Na, Zhang Jun, Xin Tian-Yi, Yi Si-Rong, Song Jing-Yuan. Identification of Dichroa febrifuga and its adulterants based on DNA barcoding technology[J]. Plant Science Journal, 2017, 35(3): 379-386. DOI: 10.11913/PSJ.2095-0837.2017.30379 |
[6] | CHENG Fang-Ting, LI Zhong-Hu, LIU Chun-Yan, YUAN Chao, LI Xue-Tong, LIU Zhan-Lin. DNA Barcoding of the Genus Rehmannia (Scrophulariaceae)[J]. Plant Science Journal, 2015, 33(1): 25-32. DOI: 10.11913/PSJ.2095-0837.2015.10025 |
[7] | Lin Gang, Kang Ning, Liu Qihong. THE INTRODUCTION AND CULTIVATION OF THE MEDICINAL PLANTS FROM THE RESERVOIR AREA (HUBEI SECTION)OF THE THREE-GORGE PROJECT TO WUHAN[J]. Plant Science Journal, 1996, 14(4): 381-384. |
[8] | Wu Yongzhong, Fang Shumin, Zhang Haidao. CHROMOSOME NUMBERS OF 4 SPECIES MEDICINAL PLANT OF MORINDA[J]. Plant Science Journal, 1992, 10(4): 383-384. |
[9] | Chen Feng-hwai Ling Yeou-ruenn, . ON THE SIGNIFICANCE OF THE MEDICINAL PLANTS IN MAKING THE CITIES AND TOWNS GREEN IN SOUTH CHINA[J]. Plant Science Journal, 1990, 8(3): 287-291. |
[10] | Fang Zhixian. THE INVESTIGATION ON THE MEDICINAL PLANTS OF THE EXI TU-MIAO AUTONOMOUS PREFECTURE[J]. Plant Science Journal, 1985, 3(2): 181-190. |