Advance Search
Jiang Bei, Tang Liang, Lu Zhao-Geng, Wang Li. Morphological and structural changes during female cone development in Cunninghamia lanceolata[J]. Plant Science Journal, 2017, 35(4): 469-476. DOI: 10.11913/PSJ.2095-0837.2017.40469
Citation: Jiang Bei, Tang Liang, Lu Zhao-Geng, Wang Li. Morphological and structural changes during female cone development in Cunninghamia lanceolata[J]. Plant Science Journal, 2017, 35(4): 469-476. DOI: 10.11913/PSJ.2095-0837.2017.40469

Morphological and structural changes during female cone development in Cunninghamia lanceolata

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31670181).

More Information
  • Received Date: February 08, 2017
  • Available Online: October 31, 2022
  • Published Date: August 27, 2017
  • We selected Chinese fir (Cunninghamia lanceolata(Lamb.) Hook.) trees from Fuzhou,China,as experimental materials and performed a systematic study of ovulate strobilus development based on morphological and anatomical observations using a digital camera,stereoscopy,semi-thin sections,and scanning electron microscopy.Green ovulate strobili formed from late October to early November.They matured in mid-March of the following year,and then entered the pollination period.During this period,the female cones underwent several changes,including a color change (to yellow),size increase,and bract opening.During ovule development,the ovular primordia formed in early January,after which the integument and nucellus arose in late January.In late February,ovules formed,and a pollen chamber developed above the elliptic nucellus.During this period,integument tissue proliferated continuously to form a micropylar canal by surrounding the nucellus.In early March,the ovules continued to increase in size and the micropyle formed.Meanwhile,the size of the opening in the micropyle increased to a maximum.In mid-to-late March,the ovules began to secrete pollination drops above the micropyle.Subsequently,the drops disappeared and the tissue above the micropyle stopped growing.These results indicate that the ovulate strobilus of Chinese fir takes about five months from differentiation to maturity,and the morphological and structural ovule adaptations to anemophily are presumably due to long-term evolution.
  • [1]
    王莉, 程芳梅, 陆彦, 金飚. 裸子植物传粉滴研究进展[J]. 植物学报, 2015, 50(6):802-812.

    Wang L, Cheng FM, Lu Y, Jin B. Research progress in pollination drops of gymnosperms[J]. Chinese Bulletin of Botany, 2015, 50(6):802-812.
    [2]
    杨永, 傅德志. 松杉类裸子植物的大孢子叶球理论评述[J]. 植物分类学报, 2001, 39(2):169-191.

    Yang Y, Fu DZ. Review on the megastrobilus theories of conifers[J]. Acta Phytotaxonomlca Sinica, 2001, 39(2):169-191.
    [3]
    王莉, 王永平, 汪琼, 潘烨, 金飚, 等. 银杏胚珠发育进程的解剖学研究[J]. 西北植物学报, 2007, 27(7):1349-1356.

    Wang L, Wang YP, Wang Q, Pan Y, Jin B,et al. Anato-mical study of development of ovule in Ginkgo biloba L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(7):1349-1356.
    [4]
    王莉, 金飚, 林明明, 陆彦, 滕年军, 陈鹏. 银杏雌性生殖器官发育过程的显微观察[J]. 植物学报, 2009, 44(6):673-681.

    Wang L, Jin B, Lin MM, Lu Y, Teng NJ, Chen P. Studies of the development of female reproductive organs in Ginkgo biloba[J]. Chinese Bulletin of Botany, 2009, 44(6):673-681.
    [5]
    王莉, 金飚, 陆彦, 金鑫鑫, 滕年军, 陈鹏. 银杏胚珠发育及其传粉生物学意义[J]. 北京林业大学学报, 2010, 32(2):79-85.

    Wang L, Jin B, Lu Y, JIN XX, Teng NJ, Chen P. Deve-lopmental characteristics of the ovule and its biologicalsignificance in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2010, 32(2):79-85.
    [6]
    金鑫鑫. 银杏胚珠发育及胚乳细胞形成的机制研究[D]. 扬州:扬州大学, 2010.
    [7]
    路兆庚, 骆凯歌, 李卫星, 潘烨, 张敏, 王莉. 银杏胚乳游离核分裂与细胞化过程观察[J]. 植物研究, 2015, 35(2):165-171.

    Lu ZG, Luo KG, Li WX, Pan Y, Zhang M,Wang L. Observation process of free nuclei division and cellulariztion in Ginkgo biloba L. endosperm[J]. Bulletin of Botanical Research, 2015, 35(2):165-171.
    [8]
    Jin B, Zhang L, Lu Y, Wang D, Jiang XX, et al. The mechanism of pollination drop withdrawal in Ginkgo biloba L.[J]. BMC Plant Biol, 2012, 12(1):59.
    [9]
    钮世辉, 袁虎威, 陈晓阳, 李伟. 油松雌雄球花高通量基因表达谱芯片分析[J]. 林业科学, 2013, 49(9):46-51.

    Niu SH, Yuan HW, Chen XY, Li W. Microarray analysis of large scale gene expression profiles between male and female cones ofPinus tabulaeformis[J]. Scientia Silvae Sinicae, 2013, 49(9):46-51.
    [10]
    Niu SH, Yuan HW, Sun XR, Porth I, Li Y, et al. A transcriptomics investigation into pine reproductive organ development[J]. New Phytol, 2016, 209(3):1278-1289.
    [11]
    Kong L, Aderkas PV, Zaharia I, Abrams SR, Lee T, Woods J. Analysis of phytohormone profiles during male and female cone initiation and early differentiation in long-shoot buds of lodgepole pine[J]. J Plant Growth Regul, 2012, 31(4):478-489.
    [12]
    田成玉, 赵春建, 李春英, 祖元刚. 樟子松大孢子的发生和雌配子体的形成过程[J]. 植物研究, 2006, 26(6):672-675.

    Tian CY, Zhao CJ, Li CY, Zu YG. The emergence of macrospore and the formation of female gametophyte in Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2006, 26(6):672-675.
    [13]
    陈庭巧. "多球果" 马尾松孢子叶球分化及发育研究[D]. 贵阳:贵州大学, 2016.
    [14]
    徐刚标, 肖玉菲, 刘雄盛, 梁文斌. 濒危植物南方红豆杉大孢子发生和雌配子体发育[J]. 植物科学学报, 2015, 33(3):271-280.

    Xu GB, Xiao YF, Liu XS, Liang WB. Studies on megasporogenesis and development of megagametophytes in Taxus chinensis var. mairei[J]. Plant Science Journal, 2015, 33(3):271-280.
    [15]
    安静. 杉木种质分子亲缘关系研究[D]. 长沙:中南林业科技大学, 2012.
    [16]
    郑璐嘉, 黄志群, 何宗明, 王夏怡, 刘桌明, 等. 林龄、叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响[J]. 林业科学, 2015, 51(1):22-28.

    Zheng LJ, Huang ZQ, He ZM, Wang XY, Liu ZM,et al. Influence of forest and foliar ages on the composition of stable carbon and nitrogen isotope of Cunninghamia lanceolata in subtropic China[J].Scientia Silvae Sinicae, 2015, 51(1):22-28.
    [17]
    Nguyen BT, 陈宇, 林小琴, 丁国昌, Pham VH, 林思祖. 不同种源越南杉木幼龄期叶绿素荧光特征比较[J]. 四川农业大学学报, 2016, 34(1):34-38.

    Nguyen BT, Chen Y, Lin XQ, Ding GC, Pham VH, Lin SZ. Chlorophyll fluorescence characteristics of Vietnam between different Chinese firprovenances[J]. Journal of Sichuan Agricultural University, 2016, 34(1):34-38.
    [18]
    韩畅, 宋敏, 杜虎, 曾馥平, 彭晚霞, 等. 广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J]. 生态学报, 2017, 37(7):2282-2289.

    Han C, Song M, Du H, Zeng FP, Peng WX, et al. Biomass and carbon storage in roots ofCunninghamia lanceolate and Pinus massoina plantations at different stand ages in Guangxi[J]. Acta Ecologica Sinica, 2017, 37(7):2282-2289.
    [19]
    魏晓骁, 王士亚, 陈爱玲, 叶义全, 黄田盛, 曹光球. 不同化感型杉木无性系对连栽地的生理响应[J]. 森林与环境学报, 2017, 37(1):22-28.

    Wei XX, Wang SY, Chen AL, Ye YQ, Huang TH, Cao GQ. Physilolgical response of different allelopathic types of Chinese fir clones to continuous cropping obstacles soil[J]. Journal of Forest and Environment, 2017, 37(1):22-28.
    [20]
    高智慧, 史忠礼, 许月明, 朱治平, 沈瑞娟, 唐锡华. 杉木种子发育生理、涩籽成因及降低败育措施的研究[J]. 林业科学研究, 2000, 13(6):659-666.

    Gao ZH, Shi ZL, Xu YM, Zhu ZP, Shen RJ, Tang XH. Studies on the seed developmental physiology, the formation of the abortive seed and the measures of decreasing abortion in Cunninghamia lanceolata[J]. Forest Research, 2000, 13(6):659-666.
    [21]
    Farjon A, Garcia SO. Cone and ovule development in Cunninghamia andTaiwania (Cupressaceaesensu lato) and its significance for conifer evolution[J]. Am J Bot, 2003, 90(1):8-16.
    [22]
    沈捷, 祝晨辰, 徐进, 施季森. 硼、钙离子对杉木花粉萌发和花粉管生长影响[J]. 林业科技开发, 2010, 24(6):57-60.

    Shen J, Zhu CC, Xu J, Shi JS. Effects of mineral elements on pollen germination and pollen tube growth of Cunninghamia lanceolate (Lamb.) Hook.[J]. China Forestry Science and Technology, 2010, 24(6):57-60.
    [23]
    张卓文. 杉木生殖生物学特性研究[D]. 武汉:华中农业大学, 2005.
    [24]
    徐进, 施季森, 杨立伟, 王桂凤. 杉木花粉母细胞减数分裂的细胞学特性及异常现象的观察[J]. 林业科学, 2007, 43(11):32-36.

    Xu J, Shi JS, Yang LW, Wang GF. Cell biological characteristics and abnormal behavior during the meiosis of pollen mother cells in Cunninghamia lanceolata[J]. Scientia Silvae Sinicae, 2007, 43(11):32-36.
    [25]
    刘琼瑶. 杉木NAC基因的克隆、表达和SNP分析[D]. 临安:浙江农林大学, 2015.
    [26]
    陈梦俅. 60Co-γ辐照对杉木种子诱变效应研究[D]. 福州:福建农林大学, 2016.
    [27]
    武星彤, 文亚峰, 韩文军, 周宏, 徐刚标. 杉木荧光标记通用引物多重PCR微卫星基因分型技术的建立与应用[J]. 分子植物育种, 2016(7):1795-1803.

    Wu XT, Wen YF, Han WJ, Zhou H, Xu GB. Establishment of microsatellite marker genotyping technology by multiplex PCR with fluorescently labelled universal primers and application on Chinese fir (Cunninghamia lanceolata)[J]. Molecular Plant Breeding, 2016(7):1795-1803.
    [28]
    许业洲, 唐万鹏, 胡兴宜, 章鹏. 杉木优良变异类型——罗田垂枝杉生物学特性研究[J]. 植物科学学报, 2005, 23(6):577-582.

    Xu YZ, Tang WP, Hu XY, Zhang P. Study on biological characteristics of Cunninghamia laceolata (Lamb.) Hk. cv. Luotian-A superior variation of Cunninghamia laceolata[J]. Plant Science Journal, 2005, 23(6):577-582.
    [29]
    雷布先, 倪臻, 唐海生. 杉木多世代滚动式种子园营建技术研究[J]. 广西林业科学, 2003, 32(2):111-117.

    Lei BX, Ni Z, Tang HS. Research on methods use for developing difference generation in breeding cycle of seed orchard in Chinese fir[J]. Guangxi Forestry Science, 2003, 32(2):111-117.
    [30]
    刘欲晓. 杉木种子园结实规律与种子高产隐产技术[J]. 湖南林业科技, 2005, 32(2):14-16.

    Liu YX. The fruit law and high-yield steady production techniques of seed yard of Cunninghamia[J]. Hunan Forestry Science & Technology, 2005, 32(2):14-16.
    [31]
    俞新妥, 陈存及, 白育玲, 黄铭利. 杉木花芽分化的观察[J]. 林业科学, 1981, 17(1):46-49.

    Yu XT, Chen CJ, Bai YL, Huang ML. A preliminary observation on the flower-bud initiation of Chinese fir in Nanpin, Fujian[J]. Scientia Silvae Sinicae, 1981, 17(1):46-49.
    [32]
    蒋恕, 叶建国. 杉木×柳杉胚胎发育的研究[J]. 南京林业大学学报:自然科学版, 1984, 8(1):124-130.

    Jiang S, Ye JG. A study of the embryological development of Chinese fir×Cryptomeria[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 1984, 8(1):124-130.
    [33]
    蒋恕. 杉木Cunninghamia lanceolata (Lamb.) Hook. 开花结籽的解剖学观察[J]. 南京林业大学学报:自然科学版, 1980, 4(1):109-115.

    Jiang S. An anatomical observation on the flowering andseeding development of Cunninghamia lanceolata (Lamb.) Hook.[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 1980, 4(1):109-115.
    [34]
    Takaso T, Tomlinson PB. Aspects of cone and ovule ontogeny in Cryptomeria (Taxodiaceae)[J]. Am J Bot, 1989, 76:692-705.
    [35]
    Takaso T, Tomlinson PB. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae-Coniferales)[J]. Am J Bot, 1990, 77(9):1209-1221.
    [36]
    Takaso T, Tomlinson PB. Seed cone and ovule ontogeny in Metasequoia,Sequoia and Sequoiadendron (Taxodiaceae-Coniferales)[J]. Bot J Linn Soc, 1992, 109(1):15-37.
    [37]
    徐刚标, 刘雄盛, 梁文斌. 极度濒危植物水松大孢子发生、雌配子体发育及胚形成[J]. 林业科学, 2015, 51(6):50-62

    . Xu GB, Liu XS, Liang WB. Megasporogenesis, female gametophyte development and embryogenesis in critically endangeredGlyptostrobus pensilis[J]. Scientia Silvae Sinicae, 2015, 51(6):50-62
    [38]
    钱莲芳. 柳杉花芽分化的观察[J]. 浙江农林大学学报, 1988(2):62-68.

    Qian LF. A primary observation on the flower-bud differentiation ofCryptomeria fortunei Hooibrenk.[J].Journal of Zhejiang A & F University, 1988(2):62-68.
    [39]
    王兵益, 苏建荣, 张志钧. 云南红豆杉传粉生物学研究[J]. 植物科学学报, 2009, 27(4):441-445.

    Wang BY, Su JR, Zhang ZJ. Pollination biology in Taxus yunnanensis[J]. Plant Science Journal, 2009, 27(4):441-445.
    [40]
    Owens JN, Takaso T, Runions CJ. Pollination in conifers[J]. Trends Plant Sci, 1998, 3(12):479-485.
    [41]
    Runions CJ, Catalano GL, Owens JN. Pollination mechanism of seed orchard interior spruce[J].Can J Forest Res, 1995, 25(9):1434-1444.
    [42]
    Runions CJ, Owens JN. Pollen scavenging and rain involvement in the pollination mechanism of interior spruce[J]. Can J Bot, 1996, 74(1):115-124.
  • Related Articles

    [1]Jin Jiang-Qun, Ren Feng-Ming, Xia Ying, Liu Zheng-Yu, Chen Yu-Han, Zhang Jun. Research on reproductive phenology, pollination, and embryonic development of Thuja sutchuenensis Franch., a plant species with extremely small populations[J]. Plant Science Journal, 2020, 38(5): 696-706. DOI: 10.11913/PSJ.2095-0837.2020.50696
    [2]Tang Rong, Huang Bao-Guo, Sun Wei-Bang, Chen Gao. Pollination biology of Amorphophallus albus (Araceae), an endemic plant in the dry-hot valley of Jinsha River[J]. Plant Science Journal, 2020, 38(4): 458-466. DOI: 10.11913/PSJ.2095-0837.2020.40458
    [3]Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
    [4]Aysajan Abdusalam, Gulzar Abdukirim. Pollination characteristics of two sympatrically distributed Tamarix species in south Xinjiang, China[J]. Plant Science Journal, 2018, 36(2): 162-169. DOI: 10.11913/PSJ.2095-0837.2018.20162
    [5]Wang Hui, Li Xiao-Xia. Differentiation in breeding system and pollination of three sympatric Corydalis species[J]. Plant Science Journal, 2017, 35(2): 186-193. DOI: 10.11913/PSJ.2095-0837.2017.20186
    [6]WANG Bing-Yi, SU Jian-Rong, ZHANG Zhi-Jun. Pollination Biology in Taxus yunnanensis[J]. Plant Science Journal, 2009, 27(4): 441-445.
    [7]WEN Ying-Qun, LIAO Jing-Ping. Study on the Development of Ovule and Female Gametophyte in Alpinia henryi[J]. Plant Science Journal, 2002, 20(3): 182-184.
    [8]Liu Lin, Ye Xiulin, Liang Chengye. SOME DEVELOPMENTAL FEATURES OF OVULE IN PENNISETUM SQUAMULATUM,WITH EMPHASIS ON EMBELLUM[J]. Plant Science Journal, 2000, 18(5): 359-362.
    [9]Zhu Tong, Li Wendian. FORMATION AND DEVELOPMENT OF THE OVULE AND EMBRYO SAC IN POPULUS LASIOCARPA OLIVER[J]. Plant Science Journal, 1989, 7(1): 13-20.
    [10]Yang Hongyuan. EXPERIMENTAL MANIPULATION OF OVULE TISSUES[J]. Plant Science Journal, 1987, 5(1): 96-100.

Catalog

    Article views (1277) PDF downloads (1427) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return