Advance Search
He Yu-Ning, Xu Zhong-Rui, Xiong Zhi-Ting. DNA methylation patterns of acid invertase gene promoters from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis under copper stress[J]. Plant Science Journal, 2017, 35(4): 574-582. DOI: 10.11913/PSJ.2095-0837.2017.40574
Citation: He Yu-Ning, Xu Zhong-Rui, Xiong Zhi-Ting. DNA methylation patterns of acid invertase gene promoters from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis under copper stress[J]. Plant Science Journal, 2017, 35(4): 574-582. DOI: 10.11913/PSJ.2095-0837.2017.40574

DNA methylation patterns of acid invertase gene promoters from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis under copper stress

Funds: 

The work was supported by a grant from the National Nature Science Foundation of China (21477093).

More Information
  • Received Date: March 30, 2017
  • Available Online: October 31, 2022
  • Published Date: August 27, 2017
  • In the present study,bisulfite sequencing (BS-seq) was performed to detect alterations in DNA methylation of acid invertase gene promoters in Cu-tolerant (MP) and non-tolerant populations (NMP) of metallophyte Elsholtzia haichowensis under Cu treatment.We found that the vacuolar invertase gene (vINV) promoter of E.haichowensis was generally methylated in the CG site,whereas the cell wall invertase gene (cwINV) promoter displayed hypomethylation at the CG site.Methylation changes at a special CHG site of the vINV promoter and six CHH sites of the cwINV promoter induced by Cu stress were observed between the two populations.In addition,CG methylation was relatively conserved in the vINV and cwINV promoters under Cu stress,whereas methylation at the CHG and CHH sites was more prone to perturbation.Under Cu stress,methylation of these individual sites remained stable in the MP,but declined or increased drastically in the NMP.This implied that MP might have evolved modulating mechanisms due to long-term Cu stress,including changes in methylation patterns in specific DNA sequences and cytosine sites.
  • [1]
    Baker AJM, Ernst WHO, van der Ent A, Malaisse F, Ginocchio R. Metallophytes:the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America[M]//Batty LC, Hallberg TKB, eds. Ecology of Industrial Pollution. New York:Cambridge University Press, 2010:7-40.
    [2]
    Tang SR, Wilke BM, Huang CY. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China[J]. Plant Soil, 1999, 209(2):225-232.
    [3]
    Liu C, Xu ZR, Cai SW, Zhang L, Xiong ZT. cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis[J]. Biologia, 2015, 70(8):1063-1069.
    [4]
    Cai SW, Xiong ZT, Li L, Li MJ, Zhang L, Liu C, Xu ZR. Differential responsesof root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis[J]. Ecotoxicology, 2014, 23(1):76-91.
    [5]
    Huang WX, Cao Y, Huang LJ, Ren C, Xiong ZT. Differential expression of acid invertase genes in roots of metallicolous and non-metallicolous populations of Rumex japonicus under copper stress[J]. Chemosphere, 2011, 84(10):1432-1439.
    [6]
    Xiong ZT, Wang T, Liu K, Zhang ZZ, Gan JH,et al. Differential invertase activity and root growth between Cu-tolerant and non-tolerant populations in Kummerowia stipulacea under Cu stress and nutrient deficiency[J]. Environ Exp Bot, 2008, 62(1):17-27.
    [7]
    Xu ZR, Liu C, Cai SW, Zhang L, Xiong ZT. Heterologous expression and comparative characterization of vacuolar invertases from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis[J]. Plant Cell Rep, 2015, 34(10):1781-1790.
    [8]
    Chen M, Lü SL, Meng YJ. Epigenetic performers in plants[J]. Dev Growth Differ, 2010, 52(6):555-566.
    [9]
    崔国鹏, 王圣洁, 覃瑞, 刘虹, 龚汉雨, 等. 极性生长的细胞中胞嘧啶甲基化的动态变化及其对GABA信号的响应[J]. 植物科学学报, 2015, 33(4):521-527.

    Cui GP, Wang SJ, Qin R, Liu H, Gong HY, et al. Dynamic changes of methylcytosine in polarized cell growthand their response to GABA signals[J]. Plant Science Journal, 2015, 33(4):521-527.
    [10]
    Song QX, Lu X, Li QT, Chen H, Hu XY, et al. Genome-wide analysis of DNA methylation in soybean[J]. Mol Plant, 2013, 6(6):1961-1974.
    [11]
    Eprintsev AT, Fedorin DN, Karabutova LA, Igamberdiev AU. Expression of genes encoding subunits A and B of succinate dehydrogenase in germinating maize seeds is regulated by methylation of their promoters[J].J Plant Physiol, 2016, 205:33-40.
    [12]
    邓莹, 高乐旋, 朱珠, 杨继. 不同水陆环境中喜旱莲子草甲基化调控因子表达水平和差异表达基因启动子区甲基化状态分析[J]. 植物科学学报, 2014, 32(5):475-486.

    Deng Y, Gao LX, Zhu Z, Yang J. Differential expression of DNA methylation regulating factors and dynamic methylation patterns of Alternanthera philoxeroides under different water treatments[J]. Plant Science Journal, 2014, 32(5):475-486.
    [13]
    Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation[J].Plant Physiol Bioch,2012, 51:129-138.
    [14]
    Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp[J]. Physiol Plant, 2004, 121(3):472-480.
    [15]
    Greco M, Chiappetta A, Bruno L, Bitonti MB. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning[J]. J Exp Bot, 2012, 63(2):695-709.
    [16]
    Erturk FA, Agar G, Arslan E, Nardemir G. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress[J]. Environ Sci Pollut R, 2015, 22(13):10291-10297.
    [17]
    丁国华, 郭丹蒂, 关旸, 刘保东, 池春玉. 重金属铅镉对濒危植物中华水韭(Isoetes sinensis)DNA甲基化的影响[J]. 农业环境科学学报, 2017, 36(2):246-249.

    Ding GH, Guo DD, Guan Y, Liu BD, Chi CY. Effect of Pb and Cd on DNA methylation of Isoetes sinensis, a rare plant[J]. Journal of Agro-Environment Science, 2017, 36(2):246-249.
    [18]
    Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, et al. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium[J]. Plant Cell Environ, 2016, 39(12):2629-2649.
    [19]
    Ou XF, Zhang YH, Xu CM, Lin XY, Zang Q, et al. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(9):1-11.
    [20]
    Uddin MS, Sun WL, He XH, da Silva JAT, Cheng Q. An improved method to extract DNA from mangoMangifera indica[J]. Biologia, 2014, 69(2):133-138.
    [21]
    Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation:Bisulphite modification and analysis[J]. Nat Protoc, 2006, 1(5):2353-2364.
    [22]
    Gruntman E, Qi YJ, Slotkin RK, Roeder T, MartienssenRA,Sachidanandam R. Kismeth:Analyzer of plant methylation states through bisulfite sequencing[J]. BMC Bioinformatics, 2008, 9:371.
    [23]
    Meyer P. DNA methylation systems and targets in plants[J]. Febs Letts, 2011, 585(13):2008-2015.
    [24]
    Bird AP. CpG-rich islands and the function of DNA methylation[J]. Nature, 1986, 321(6067):209-213.
    [25]
    Cokus SJ, Feng SH, Zhang XY, Chen ZG, Merriman B, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452(7184):215-219.
    [26]
    Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, Van de Peer Y. Computational approaches to identify promoters and cis-regulatory elements in plant genomes[J]. Plant Physiol, 2003, 132(3):1162-1176.
    [27]
    Jimenez-Arias D, Borges AA, Luis JC, Valdes F,Sandalio LM, Perez JA. Priming effect of menadione sodium bisulphite against salinity stress inArabidopsis involves epigenetic changes in genes controlling proline metabolism[J]. Environ Exp Bot, 2015, 120:23-30.
    [28]
    Boyko A, Kovalchuk I. Epigenetic control of plant stress response[J]. Environ Mol Mutagen, 2008, 49(1):61-72.
    [29]
    Uthup TK, Ravindran M, Bini K, Thakurdas S. Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis[J]. Mol Plant, 2011, 4(6):996-1013.
    [30]
    Chatterjee R, Vinson C. CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression[J]. BBA-Gene Regul Mech, 2012, 1819(7):763-770.
    [31]
    Lee GH, Sohn SH, Park EY, Park YD. Aberrant promoter methylation occurred from multicopy transgene and SU(VAR)3-9 homolog 9(SUVH9) gene in transgenic Nicotiana benthamiana[J]. Funct Plant Biol, 2012, 39(9):764-773.
    [32]
    Ay N, Janack B, Fischer A, Reuter G, Humbeck K. Alterations of histone modifications at the senescence-associated gene HvS40 in barley during senescence[J]. Plant Mol Biol, 2015, 89(1-2):127-141.
    [33]
    Richards EJ. Inherited epigenetic variation-revisiting soft inheritance[J]. Nat Rev Genet, 2006, 7(5):395-401.
    [34]
    Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, et al. Epigenetic inheritance in rice plants[J]. Ann Bot-London, 2007, 100(2):205-217.
  • Related Articles

    [1]Zhou Si-Yu, Wang Yong-Qing. Relationship between embryonic callus induction from leaves and endogenous hormone content in loquat (Eriobotrya japonica Lindl.)[J]. Plant Science Journal, 2017, 35(1): 99-106. DOI: 10.11913/PSJ.2095-0837.2017.10099
    [2]WEN Jin-Yan, ZHANG Shuo, GAO Su-Ping, LEI Ting, LUO Liang-Xu, LUO Yan. Development Process of Pistils and Stamens and Effect of Endogenous Hormone Content on Style Growth in Plumbago auriculata Lam. with Distyly[J]. Plant Science Journal, 2016, 34(2): 263-270. DOI: 10.11913/PSJ.2095-0837.2016.20263
    [3]MA Li-Yuan, QI Guo-Hui, LI Bao-Guo, GUO Su-Ping, ZHANG Xue-Mei, SHI Li-Li, DONG Li-Xin, LIU Xi-Xing. Content of Endogenous Phytohormones and Isoenzymes of Peroxidase in Male and Female Pistacia chinensis Plants Bunge Leaves[J]. Plant Science Journal, 2013, 31(3): 297-303. DOI: 10.3724/SP.J.1142.2013.30297
    [4]SONG Li-Hong, CAO Bang-Hua. Studies on Activities of Indoleacetic Acid Oxidase, Polyphenol Oxidase and Peroxidase in Cuttings of Broussonetia papyrifera during Rooting Process[J]. Plant Science Journal, 2005, 23(4): 347-350.
    [5]JIANG Jie-Zeng, QIU Jie-Juan, HAN Xiu-Qin, CAO Bei-Sheng, ZHU Qing-Sen. Changes of Endogenous Hormone Contents of Different Partsduring Development of Water Bamboo(Zizania latifolia)[J]. Plant Science Journal, 2004, 22(3): 245-250.
    [6]CHEN Li-Song, LIU Xin-Hui. Changes in Peroxidase and IAA Oxidase Activities in Litchi Leaves under Water Stress[J]. Plant Science Journal, 2002, 20(2): 131-136.
    [7]WANG Ming-Gang, LUO Mao-Chun, ZHANG Xiang-Hong, SHEN Ming-Shan, CHEN Mu-Chuan. Effects of Low Energy Carbon Ion and Nitrogen Ion Implantation on Germinant Rate, Growth Weight and Peroxidase of Stevia rebaudiana Bertoni[J]. Plant Science Journal, 2001, 19(2): 143-148.
    [8]Xie Kaibin, Shi Guoxin, Chen Guoxiang, Chang Fuchen, Ding Xiaoyu. THE EFFECTS OF Hg2+ POLLUTION ON ACTIVITY OF PEROXIDASE IN ROOTS OF EURYALE FEROX SALISB AND TRAPA BICORNIS OSBECK[J]. Plant Science Journal, 2000, 18(1): 70-72.
    [9]He Xiaowei, Chen Kecheng, Xiao Yihua. EFFECT OF RED OR FAR-RED LIGHT AND PLANT HORMONE ON THE GROWTH AND ACTIVITY OF CAT, POX IN SEEDING OF RICE[J]. Plant Science Journal, 1993, 11(2): 125-129.
    [10]Hou Songsheng, Li Xinmin, Shang Tinglan, Wu Yulan, Li Honglin. STUDIES ON PHYSIOLOGICAL AND BIOCHEMICAL CHARACTER IN SUSPENSION CULTURE OF BERBERIS JULIANAE SCHNEID CELLS Ⅰ.Relationship between cell growth and changes in the conductivity and peroxidase activity of cultured medium[J]. Plant Science Journal, 1988, 6(2): 129-132.

Catalog

    Article views (856) PDF downloads (1433) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return