Advance Search
Shu Huang-Ying, Hao Yuan-Yuan, Cai Qing-Ze, Wang Zhen, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana[J]. Plant Science Journal, 2017, 35(4): 603-608. DOI: 10.11913/PSJ.2095-0837.2017.40603
Citation: Shu Huang-Ying, Hao Yuan-Yuan, Cai Qing-Ze, Wang Zhen, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana[J]. Plant Science Journal, 2017, 35(4): 603-608. DOI: 10.11913/PSJ.2095-0837.2017.40603

Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31660091) and Startup Funding from Hainan University (KYQD1656).

More Information
  • Received Date: April 09, 2017
  • Available Online: October 31, 2022
  • Published Date: August 27, 2017
  • The transformation of plants from vegetative to reproductive growth is the key to flowering and development.Flowering at the right time is important for plant growth and inheritance.Control of flowering time also plays a crucial role in the development of agricultural production.Plant flowering molecular regulation is a complex synergistic regulation of endogenous and exogenous factors.In recent years,research on flowering control of different plants,especially Arabidopsis thaliana(L.) Heynh.,has made remarkable progress.The mechanism of flowering control mainly involves six major pathways,including the photoperiodic,vernalization,autonomous,temperature,gibberellin,and age pathways.A variety of genetic control channels that are independent and interrelated form a complex flowering network.Here we focused on the latest research progress on the functions of newly identified genes underlying plant flowering.This paper could help to further understand the molecular mechanisms involved in the transition from vegetative to reproductive growth in plants.
  • [1]
    Blumel M, Dally N, Jung C. Flowering time regulation in crops-what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129.
    [2]
    Bouche F, Lobet G, Tocquin P, Perilleux C. FLOR-ID:an interactive database of flowering-time gene networks in Arabidopsis thaliana[J]. Nucleic Acids Res, 2016,44(D1):D1167-D1171.
    [3]
    Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis[J]. Plant Cell, 2013, 25(3):820-833.
    [4]
    Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012, 336(6084):1045-1049.
    [5]
    Rosas U, Mei Y, Xie QG, Banta JA, Zhou RW, Seufferheld G, et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS[J]. Nat Commun, 2014, 5:3651.
    [6]
    Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, et al. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49):17672-17677.
    [7]
    Lazaro A, Mouriz A, Piñeiro M, Jarillo JA. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis[J]. Plant Cell, 2015, 27(9):2437-2454.
    [8]
    Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, Qiao M, et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS Tand LEAFY in Arabidopsis thaliana[J]. Plant J, 2016, 85(1):96-106.
    [9]
    Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T[J]. Nature, 2011, 478(7367):119-122.
    [10]
    González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner[J]. Plant J, 2012, 70(4):678-690.
    [11]
    Lee R, Baldwin S, Kenel F, McCallum J, Macknight R. FLOWERING LOCUS Tgenes control onion bulb formation and flowering[J]. Nat Commun, 2013, 4:2884.
    [12]
    Navarro C, Cruz-Oró E, Prat S. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation[J]. Curr Opin Plant Biol, 2015, 23:45-53.
    [13]
    Förderer A, Zhou Y, Turck F. The age of multiplexity:recruitment and interactions of Polycomb complexes in plants[J]. Curr Opin Plant Biol, 2016, 29:169-178.
    [14]
    Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC[J]. Curr Biol,2014, 24(15):1793-1797.
    [15]
    Sung S, Amasino RM. Vernalization in Arabidopsis thalianais mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427(6970):159-164.
    [16]
    Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC[J]. Curr Biol, 2007, 17(1):73-78.
    [17]
    De LF, Crevillen P, Jones AM, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLCduring vernalization[J]. Proc Natl Acad Sci USA, 2008, 105(44):16831-16836.
    [18]
    Coustham V, Li P, Strange A, Lister C, Song J, Dean C. Quantitative modulation of polycomb silencing underlies natural variation in vernalization[J]. Science, 2012, 337(6094):584-587.
    [19]
    Angel A, Song J, Yang H, Questa JI, Dean C, Howard M. Vernalizing cold is registered digitally at FLC[J]. Proc Natl Acad Sci USA, 2015, 112(13):4146-4151.
    [20]
    Lee J, Yun JY, Zhao W, Shen WH, Amasino RM. A methyltransferase required for proper timing of the vernalization response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2015, 112(7):2269-2274.
    [21]
    Chekanova JA. Long non-coding RNAs and their functions in plants[J]. Curr Opin Plant Biol, 2015, 27:207-216.
    [22]
    Crevillén P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528):587-590.
    [23]
    Li P, Filiault D, Box MS, Kerdaffrec E, Oosterhout C, Wilczek AM, et al. Multiple FLChaplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana[J]. Genes Dev, 2014, 28(15):1635-1640.
    [24]
    Li P, Tao Z, Dean C. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR[J]. Genes Dev, 2015, 29(7):696-701.
    [25]
    Wang ZW, Wu Z, Raitskin O, Sun Q, Dean C. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor[J]. Proc Natl Acad Sci USA, 2014, 111(20):7468-7473.
    [26]
    Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Mol Cell, 2014, 54(1):156-165.
    [27]
    Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. R-loop stabilization represses antisense transcription at the Arabidopsis FLClocus[J]. Science, 2013, 340(6132):619-621.
    [28]
    Liu F, Bakht S, Dean C. Cotranscriptional role for Arabidopsis DICER-LIKE 4 in transcription termination[J]. Science, 2012, 335(6076):1621-1623.
    [29]
    Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation[J]. Cell Res, 2015, 25(7):864-876.
    [30]
    Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393):242-245.
    [31]
    Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013, 342(6158):628-632.
    [32]
    Lee JH, Kim SH, Kim JJ, Ahn JH. Alternative splicing and expression analysis of high expression of osmotically responsive genes1(HOS1) in Arabidopsis[J]. BMB Rep, 2012, 45(9):515-520.
    [33]
    Song YH, Ito S, Imaizumi T. Flowering time regulation:photoperiod-and temperature-sensing in leaves[J]. Trends Plant Sci,2013, 18(10):575-583.
    [34]
    Galvão VC, Horrer D, Küttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana[J]. Development, 2012, 139(21):4072-4082.
    [35]
    Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors[J]. Plant Cell,2012, 24(8):3320-3332.
    [36]
    D'Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FTpara-logue TSF[J]. Plant J,2011, 65(6):972-979.
    [37]
    Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
    [38]
    Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosumssp. andigena[J]. Plant Physiol,2014, 164(2):1011-1027.
    [39]
    Yu S, Lian H, Wang JW. Plant developmental transitions:the role of microRNAs and sugars[J]. Curr Opin Plant Biol, 2015, 27:1-7.
    [40]
    Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120):704-707.
    [41]
    Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, et al. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis[J]. Genome Biol, 2015, 16(1):31.
    [42]
    Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa[J]. Science, 2013, 340(6136):1097-1100.
    [43]
    Jung JH, Seo PJ, Ahn JH, Park CM. ArabidopsisRNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering[J]. J Biol Chem, 2012, 287(19):16007-16016.
    [44]
    Liu D, Hu R, Palla KJ, Tuskan GA, Yang X. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research[J]. Curr Opin Plant Biol, 2016, 30:70-77.
  • Related Articles

    [1]Wang Yuqing, Zhou Shouhang, Ma Fulong, Wang Haizhen, Han Lu. Response of osmoregulatory substances and antioxidant enzyme activities in heteromorphic leaves of Populus euphratica Oliv. to groundwater depth[J]. Plant Science Journal, 2024, 42(2): 221-231. DOI: 10.11913/PSJ.2095-0837.23204
    [2]Zhen Zhao-Meng, Zhuang Xiao-Cui, Liu Ye, Chen Gui-Lin, Guo Ming-Quan. Antioxidant activities and chemical constituents of roots of Mondia whiteii (Hook. f.) Skeels[J]. Plant Science Journal, 2020, 38(4): 543-550. DOI: 10.11913/PSJ.2095-0837.2020.40543
    [3]Cai Yuan-Bao, Yang Xiang-Yan, Sun Guang-Ming, Zhang Zhi-Li, Huang Qiang, Liu Ye-Qiang, Tang Ying-Ying, Wang Yun-Ru, Li Mu. Relationship among colors, pigments, and antioxidant activities of pineapple leaves[J]. Plant Science Journal, 2017, 35(2): 283-290. DOI: 10.11913/PSJ.2095-0837.2017.20283
    [4]Xie Guo-Fang, Xu Xiao-Yan, Wang Rui, Liu Zhi-Gang, Zhou Xiao-Li, Yang Han-Tao. Analysis of phenolic, Vc and antioxidant activity of fruits and leaves of Rosa sterilis D. Shi[J]. Plant Science Journal, 2017, 35(1): 122-127. DOI: 10.11913/PSJ.2095-0837.2017.10122
    [5]WANG Hui, WANG Qi-Lin, TIAN Jiao, DANG Yue-Fang, LIU Jian-Li, LI Shan, SHANG Jiao, FANG Min-Feng. Antioxidant and Anticancer Activities of Extracts Derived from Four Kinds of Lichen[J]. Plant Science Journal, 2014, 32(2): 181-188. DOI: 10.3724/SP.J.1142.2014.20181
    [6]REN Hui, ZHOU Jing, LI Yi-Wei, WEI Chi-Zhang, LU Yu-Ying, LU Yan-Chun, LUO Rui-Hong. Study on Nutrition and Antioxidant Activities of Sterculia nobilis Smith Seeds[J]. Plant Science Journal, 2013, 31(2): 203-208. DOI: 10.3724/SP.J.1142.2013.20203
    [7]SUN Xiao-Chun, YAN Gui-Qin. Comparisons of Antioxidant Activity of the Polysaccharide from Different Parts of Elaeagnus umbellata Thunb.[J]. Plant Science Journal, 2011, 29(6): 734-737.
    [8]CHEN Tao, WANG Gui-Mei, SHEN Wei-Wei, LI Xiao-Zhen, QI Jian-Min, XU Jian-Tang, TAO Ai-Fen, LIU Xiao-Qian. Effect of Salt Stress on the Growth and Antioxidant Enzyme Activity of Kenaf Seedlings[J]. Plant Science Journal, 2011, 1(4): 493-501.
    [9]QIAN Li-Na, CHEN Ping, LI Xiao-Li, JIANG Liang, ZHAN Sha. Study on Antioxidant Activity of Total Saponins in Panax japonicus[J]. Plant Science Journal, 2008, 26(6): 674-676.
    [10]ZHANG Gai-Ping, YANG Jian-Xiong, ZHU Yu-An. Study on Antioxidant Activity of Lithospermum erythrorhizon in vitro[J]. Plant Science Journal, 2007, 25(5): 490-493.
  • Cited by

    Periodical cited type(9)

    1. 杨奕颖,苏思霖,曹恩志,李红有,迟洪明,蔺凯,吴旭东,何文强,杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响. 中国沙漠. 2025(01): 162-172 .
    2. 杨建欣,龚买玉,马长乐,樊智丰,高灿,王李娟,邓莉兰. 大头茶属3种植物天然居群的叶表型性状特征研究. 植物科学学报. 2025(01): 21-31 . 本站查看
    3. 冯云,张韫,范少辉,刘广路,魏松坡. 12种竹子的叶表型变异及其与环境因子的关系. 西北林学院学报. 2024(01): 147-153 .
    4. 马凡强,简尊吉,郭泉水,秦爱丽,梁洪海,杨永明. 长期水陆周期性变化条件下香根草形态性状和生物量分配的可塑性. 生态学报. 2023(02): 672-680 .
    5. 吴天彧,杨依康,周帅,张清舒,罗建. 色季拉山不同海拔梯度下三花杜鹃叶表型性状变异研究. 高原农业. 2022(01): 41-48 .
    6. 袁娅娟,白小明,朱雅楠,张毓婧,闫玉邦,张才忠,李玉杰. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报(中英文). 2021(08): 1359-1369 .
    7. 牛雪婧,聂靖,杨自云,赵雪利. 河北木蓝叶表型对干旱胁迫的响应. 西北植物学报. 2020(04): 613-623 .
    8. 刘涛,吕婷,刘玉萍,梁瑞芳,陈志,苏旭. 青藏高原特有属——固沙草属表型变异及其对环境因子的响应. 西北植物学报. 2020(07): 1219-1229 .
    9. 艾喆,徐婷婷,周兆娜,马飞. 小叶锦鸡儿天然居群叶形态性状变异研究. 西北植物学报. 2020(09): 1595-1604 .

    Other cited types(5)

Catalog

    Article views (2381) PDF downloads (2631) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return