Advance Search
Wang Qiu-Lin, Zhi Yong-Wei, Jiang Hong-Sheng, Cao Yu, Li Wei. Effects of different initial snail densities on submersed macrophyte Vallisneria spinulosa Yan and its epiphyton[J]. Plant Science Journal, 2017, 35(5): 741-749. DOI: 10.11913/PSJ.2095-0837.2017.50741
Citation: Wang Qiu-Lin, Zhi Yong-Wei, Jiang Hong-Sheng, Cao Yu, Li Wei. Effects of different initial snail densities on submersed macrophyte Vallisneria spinulosa Yan and its epiphyton[J]. Plant Science Journal, 2017, 35(5): 741-749. DOI: 10.11913/PSJ.2095-0837.2017.50741

Effects of different initial snail densities on submersed macrophyte Vallisneria spinulosa Yan and its epiphyton

Funds: 

This work was supported by grants from the Ph. D. Introduction Project of Jiangxi Academy of Sciences (2014-YYB-25) and the National Natural Science Foundation of China (31500296).

More Information
  • Received Date: April 09, 2017
  • Available Online: October 31, 2022
  • Published Date: October 27, 2017
  • Macrophytes and their epiphyton are the main primary producers in shallow lakes. Freshwater snails are the main primary consumers in freshwater ecosystems, but it is still debatable whether snail densities are an important factor that determine the growth of macrophytes and their epiphyton. We established four snail densities (0, 40, 80, and 240 ind·m-2) to investigate the grazing impact of snails (Radix swinhoei H. Adams) on the submerged macrophyte Vallisneria spinulosa Yan and its epiphyton, and determine the dynamics of the snail populations from the interaction. Results indicated that R. swinhoei strongly reduced the biomass of the epiphyton, but promoted the biomass of the macrophytes, and at the highest initial snail density even induced higher ramet number of macrophytes. The direct grazing effects of snails on macrophytes were observed but were not significant at the moderate eutrophic level, probably because submerged macrophytes alone could not support the high densities of snails. The size structure of the snail population could quickly respond to nutrient levels of the water-bodies and food resources in the environment.
  • [1]
    Nõges T, Luup H, Feldmann T. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia[J]. Aqua Ecol, 2010, 44(1):83-92.
    [2]
    Wetzel RG. A comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake[J]. Int Rev Hydrobiol, 1964, 49(1):1-61.
    [3]
    Iwan Jones J, Moss B, Eaton JW, Young JO. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists?[J]. Freshw Biol, 2000, 43(4):591-604.
    [4]
    Cao Y, Li W, Jeppesen E. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails:a microcosm approach[J]. Hydrobiologia, 2014, 738(1):49-59.
    [5]
    Cao Y, Olsen S, Gutierrez MF, Brucet S, Davidson TA, Li W, et al. Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes[J]. Hydrobiologia, 2017, 795(1):267-279.
    [6]
    Jacobsen D, Sand-Jensen KAJ. Herbivory of invertebrates on submerged macrophytes from Danish freshwaters[J]. Freshw Biol, 1992, 28(3):301-308.
    [7]
    陈洪达. 武汉东湖水生维管束植物群落的结构和动态[J]. 海洋与湖沼, 1980, 11(3):275-284.

    Chen HD. Structure and dynamics of macrophtyes communities in lake Donghu, Wuhan[J]. Oceanologia Etlimnologia Sinica, 1980, 11(3):275-284.
    [8]
    Rao W, Ning J, Zhong P, Jeppesen E, Liu ZW. Size-dependent feeding of omnivorous Nile tilapia in a macrophyte-dominated lake:implications for lake mana-gement[J]. Hydrobiologia, 2015, 749(1):125-134.
    [9]
    Lodge DM, Kershner MW, Aloi JE, Covich AP. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web[J]. Ecology, 1994, 75(5):1265-1281.
    [10]
    Lodge DM, Lorman JG. Reductions in submersed macrophyte biomass and species richness by the crayfish Orconectes rusticus[J]. Can J Fish Aquat Sci, 1987, 44(3):591-597.
    [11]
    Wang HJ, Pan BZ, Liang XM, Wang HZ. Gastropods on submersed macrophytes in Yangtze lakes:community characteristics and empirical modelling[J]. Int Rev Hydrobiol, 2006, 91(6):521-538.
    [12]
    Fang L, Wong PK, Lin L, Lan CY, Qiu JW. Impact of invasive apple snails in Hong Kong on wetland macrophytes, nutrients, phytoplankton and filamentous algae[J]. Freshw Biol, 2010, 55(6):1191-1204.
    [13]
    Underwood GJC, Thomas JD, Baker JH. An experimental investigation of interactions in snail-macrophyte-epiphyte systems[J]. Oecologia, 1992, 91(4):587-595.
    [14]
    Xiong W, Yu D, Wang Q, Liu CH, Wang LG. A snail prefers native over exotic freshwater plants:implications for the enemy release hypotheses[J]. Freshw Biol, 2008, 53(11):2256-2263.
    [15]
    Li KY, Liu ZW, Gu BH. Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis[J]. Ecol Complex, 2009, 6(4):438-442.
    [16]
    Dillon RT. The Ecology of Freshwater Molluscs[M]. Cambridge:Cambridge University Press, 2000.
    [17]
    国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
    [18]
    De Kluijver A, Ning J, Liu Z, Jeppesen E, Gulati RD, Middelburg JJ. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China[J]. Limnol Oceanogr, 2015, 60(2):375-385.
    [19]
    Olsen S, Chan F, Li W, Zhao ST, Søndergaard M, Jeppesen E. Strong impact of nitrogen loading on submerged macrophytes and algae:a long-term mesocosm experiment in a shallow Chinese lake[J]. Freshw Biol, 2015, 60(8):1525-1536.
    [20]
    Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae[J]. Ecol Eng, 2006, 28(1):64-70.
    [21]
    Li W, Zhang Z, Jeppesen E. The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration:a mesocosm approach[J]. Freshw Biol, 2008, 53(11):2321-2330.
    [22]
    McCollum EW, Crowder LB, McCollum SA. Complex interactions of fish, snails, and littoral zone periphyton[J]. Ecology, 1998, 79(6):1980-1994.
    [23]
    Jones JI, Sayer CD. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes?[J]. Ecology, 2003, 84(8):2155-2167.
    [24]
    Guariento RD, Caliman A, Esteves FA, Bozelli RL, Enrich-Prast A, Farjalla VF. Substrate influence and temporal changes on periphytic biomass accrual and metabolism in a tropical humic lagoon[J]. Limnologica, 2009, 39(3):209-218.
    [25]
    Cattaneo A, Amireault MC. How artificial are artificial substrata for periphyton?[J]. J North Am Benthol Soc, 1992, 11(2):244-256.
    [26]
    Tarkowska-Kukuryk M, Mieczan T. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake[J]. J Limnol, 2012, 71(2):30.
    [27]
    谢贻发, 李传红, 刘正文, 陈光荣,雷泽湘. 基质条件对苦草(Vallisneria natans)生长和形态特征的影响[J]. 农业环境科学学报, 2007, 26(4):1269-1272.

    Xie Y, Li CH, Liu ZW, Chen GR, Lei ZX. Effects of sediments on the growth and morphology of Vallisneria natans[J]. Journal of Agro-Environment Science, 2007, 26(4):1269-1272.
    [28]
    Jenkerson CG, Hickman M. Interrelationships among the epipelon, epiphyton and phytoplankton in a eutrophic lake[J]. Int Rev Hydrobiol Hydrogr, 1986, 71(4):557-579.
    [29]
    Casco MA, Mac Donagh ME, Cano MG, Solari LC, Claps MC, Gabellone NA. Phytoplankton and epipelon responses to clear and turbid phases in a seepage lake (Buenos Aires, Argentina)[J]. Int Rev Hydrobiol, 2009, 94(2):153-168.
    [30]
    Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes[J]. J North Am Benthol Soc, 2006, 25(2):379-392.
    [31]
    Carlsson NOL, Brönmark C. Size-dependent effects of an invasive herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian wetlands[J]. Freshw Biol, 2010, 51(4):695-704.
    [32]
    Sheridan JA, Bickford D. Shrinking body size as an ecological response to climate change[J]. Nat Clim Chang, 2011, 1(8):401-406.
    [33]
    Rosemond AD, Mulholland PJ, Elwood JW. Top-down and bottom-up control of stream periphyton:effects of nutrients and herbivores[J]. Ecology, 1993, 74(4):1264-1280.
    [34]
    Wojdak JM. Relative strength of top-down, bottom-up, and consumer species richness effects on pond ecosystems[J]. Ecolal Monogr, 2005, 75(4):489-504.
  • Related Articles

    [1]Tian Rui, Wang Liang, Yang Wei, Song Shu-Jie, Niu Yu-Hua, Zou Yang-Jun, Ma Feng-Wang, Li Ming-Jun, Ma Bai-Quan. Effects of exogenous application of humic acid liquid film on photosynthetic characteristics and fruit quality of Malus domestica Borkh.[J]. Plant Science Journal, 2023, 41(5): 668-676. DOI: 10.11913/PSJ.2095-0837.22292
    [2]Shen Su-Yun, Wang Zhou-Qian, Zhang Qi, Yang Jie, Han Fei, Zhong Cai-Hong, Wang Chuan-Hua, Huang Wen-Jun. Analysis of fruit quality and sensory evaluation of 36 kiwifruit (Actinidia) germplasm accessions[J]. Plant Science Journal, 2023, 41(4): 540-551. DOI: 10.11913/PSJ.2095-0837.22300
    [3]Huang Wen-Jun, Ran Xin-Yu, Wang Zhou-Qian, Zhong Cai-Hong. Effects of different storage temperature on fruit quality and storability of Actinidia arguta (Sieb. & Zucc.) Planch. ex Miq. 'Mizao 1'[J]. Plant Science Journal, 2022, 40(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2022.50695
    [4]Han Fei, Zhao Ting-Ting, Liu Xiao-Li, Zhang Qi, Li Da-Wei, Tian Hua, Peng Jue, Zhong Cai-Hong. Genetic analysis of fruit traits in Actinidia rufa (Siebold and Zuccarini) Planchon ex Miquel × Actinidia chinensis var. chinensis C. F. Liang kiwifruit hybrid population[J]. Plant Science Journal, 2022, 40(4): 505-512. DOI: 10.11913/PSJ.2095-0837.2022.40505
    [5]Xiong Hao, Zheng Hao, Han Jia-Xin, Yuan Xin-Yu, Li Ji-Tao, Zhong Cai-Hong, Zhang Qiong. Effects of CPPU treatment on fruit quality in Actinidia[J]. Plant Science Journal, 2022, 40(1): 74-83. DOI: 10.11913/PSJ.2095-0837.2022.10074
    [6]Chen Mei-Yan, Zhao Ting-Ting, Peng Jue, Zhang Peng, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit (Actinidia chinensis var. chinensis) orchards[J]. Plant Science Journal, 2021, 39(2): 193-200. DOI: 10.11913/PSJ.2095-0837.2021.20193
    [7]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [8]Chen Mei-Yan, Zhang Peng, Zhao Ting-Ting, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Relationship between harvest indices and fruit quality traits in Actinidia chinensis ‘Jintao’[J]. Plant Science Journal, 2019, 37(5): 621-627. DOI: 10.11913/PSJ.2095-0837.2019.50621
    [9]Huang Wen-Jun, Liu Xiao-Li, Zhang Qi, Chen Mei-Yan, Zhong Cai-Hong. Research on changes in postharvest physiology and fruit quality of Actinidia chinensis ‘Donghong’ under different storage methods[J]. Plant Science Journal, 2019, 37(3): 382-388. DOI: 10.11913/PSJ.2095-0837.2019.30382
    [10]LI Fang-Min, WANG Jun, CHEN YU-Ping, ZOU Zhi-Rong, WANG Xun-Ling, YUE Ming. The Combined Effects of Enhanced UV-B Radiation and Doubled CO2 Concentration on the Growth,Fruit Quality and Yield of Tomato in Winter Plastic Greenhouse[J]. Plant Science Journal, 2006, 24(1): 49-53.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return