Citation: | Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750 |
[1] |
Godin B, Agneessens R, Gerin P, Delcarte J. Structural carbohydrates in a plant biomass:correlations between the detergent fiber and dietary fiber methods[J]. J Agr Food Chem, 2014, 62(24):5609-5616.
|
[2] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, et al. Nonstructural carbon in woody plants[J]. Ann Rev Plant Biol, 2014, 65:667-687.
|
[3] |
Loescher WH, Mccamant T, Keller JD. Carbohydrate reserves, translocation, and storage in woody plant roots[J]. Hortscience, 1990, 25(3):274-281.
|
[4] |
O'Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels[J]. Nature Clim Change, 2014, 4:710-714.
|
[5] |
Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant Cell Environ, 2014, 37(1):153-161.
|
[6] |
McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiol, 2011, 155(3):1051-1059.
|
[7] |
McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, et al. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J]. New Phytol, 2008, 178(4):719-739.
|
[8] |
Jacquet JS, Bosc A, O'Grady A, Jactel H. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates[J]. Tree Physiol, 2014, 34(4):367-376.
|
[9] |
Galiano L, Martínez-Vilalta J, Lloret F. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4yr after a drought episode[J]. New Phytol, 2011, 190(3):750-759.
|
[10] |
张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1):117-126.
Zhang SB, Zhang JL, Cao KF. Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species[J]. Plant Science Journal, 2016, 34(1):117-126.
|
[11] |
Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. New Phytol, 2013, 197(3):862-872.
|
[12] |
Van der Heyden F, Stock WD. Nonstructural carbohydrate allocation following different frequencies of simulated browsing in three semi-arid shrubs[J]. Oecologia, 1995, 102:238-245.
|
[13] |
Reichenbacker RR, Schultz RC, Hart ER. Artificial defoliation effect on populus growth, biomass production, and total nonstructural carbohydrate concentration[J]. Environ Entomol, 1996, 25(3):632-642.
|
[14] |
Wiley E, Huepenbecker S, Casper BB, Helliker BR. The effects of defoliation on carbon allocation:can carbon limitation reduce growth in favour of storage?[J]. Tree Physiol, 2013, 33(11):1216-1228.
|
[15] |
Kosola KR, Dickmann DI, Paul EA, Parry D. Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars[J]. Oecologia, 2001, 129(1):65-74.
|
[16] |
Landhäusser SM, Lieffers VJ. Defoliation increases risk of carbon starvation in root systems of mature aspen[J]. Trees, 2012, 26(2):653-661.
|
[17] |
Anderegg WR, Callaway ES. Infestation and hydraulic consequences of induced carbon starvation[J]. Plant Physiol, 2012, 159:1866-1874.
|
[18] |
Dickmann DI, Nguyen PV, Pregitzer KS. Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones[J]. For Ecol Manage, 1996, 80(1-3):163-174.
|
[19] |
Gieger T, Thomas FM. Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea[J]. Basic Appl Ecol, 2002, 3(2):171-181.
|
[20] |
Sala A, Woodruff DR, Meizer FC. Carbon dynamics in trees:feast or famine[J]. Tree Physiol, 2012, 32(1):764-775.
|
[21] |
王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3):248-255.
Wang L, Feng JX, Wan XC. Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia[J]. Chinese Journal of Plant Ecology, 2013, 37(3):248-255.
|
[22] |
王林, 代永欣, 郭晋平, 高润梅, 万贤崇. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6):1-9.
Wang L, Dai YX, Guo JP, Gao RM, Wan XC. Interaction of hydraulic failure and carbon starvation on seedlings during drought[J]. Sientia Silvae Sinicae, 2016, 52(6):1-9.
|
[23] |
Hoch G, Richter A, Körner C. Non-structural carbon compounds in temperate forest trees[J]. Plant Cell Environ, 2003, 26(7):1067-1081.
|
[24] |
Améglio T, Bodet C, Lacointe A, Cochard H. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J]. Tree Physiol, 2002, 22:1211-1220.
|
[25] |
王林, 代永欣, 樊兴路, 张芸香, 黄平, 万贤崇. 风对黄花蒿水力学性状和生长的影响[J]. 生态学报, 2015, 35(13):4454-4461.
Wang L, Dai YX, Fan XL, Zhang YX, Huang P, Wan XC. Effects of wind on hydraulic properties and growth of Artemisia annua Linn.[J]. Acta Ecologica Sinica, 2015, 35(13):4454-4461.
|
[26] |
Klein T, Cohen S, Yakir D. Hydraulic adjustments underlying drought resistance of Pinus halepensis[J]. Tree Physiol, 2011, 31(6):637-648.
|
[27] |
Eyles A, Smith D, Pinkard EA, Smith L, Corkrey R, et al. Photosynthetic responses of fild-grown Pinus radiata trees to artificial and aphid-induced defoliation[J]. Tree Physiol, 2011, 31:592-603.
|
[28] |
史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4):362-370.
Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Plant Ecology, 2015, 39(4):362-370.
|
[29] |
Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism[J]. Ann Rev Plant Biol, 1989, 40(1):19-38.
|
[30] |
Lovisolo C, Perrone I, Hartung W, Schubert A. An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought[J]. New Phytol, 2008, 180(3):642-651.
|
[31] |
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytol, 2011, 190(3):709-723.
|
[32] |
Stiller V, Sperry JS. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.)[J]. J Exp Bot, 2002, 53(371):1155-1161.
|
[33] |
Christensen-Dalsgaard KK, Tyree MT. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ[J]. Plant Cell Environ, 2014, 37(5):1074-1085.
|
[34] |
Sengupta S, Majumder AL. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature[J]. Front Plant Sci, 2014, 5:224-224.
|
[35] |
Nardini A, Maria A, Gullo L, Salleo S. Refilling embolized xylem conduits:Is it a matter of phloem unloading?[J]. Plant Sci, 2011, 180(4):604-611.
|
[36] |
Chitarra W, Balestrini R, Vitali M, Pagliarani C, Perrone I, et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles[J]. Planta, 2014, 239(4):887-899.
|
[37] |
Mcculloh KA, Johnson DM, Meinzer FC, Lachenbruch B. An annual pattern of native embolism in upper branches of four tall conifer species[J]. Am J Bot, 2011, 98(6):1007-1015.
|
[38] |
Brodersen CR, McEIrone AJ. Maintenance of xylem network transport capacity:a review of embolism repair in vascular plants[J]. Front Plant Sci, 2013, 4:1-11.
|