Advance Search
Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925
Citation: Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925

Recent advances in plant cytoplasmic male sterility and fertility restoration

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31470412) and the Startup Funding from Hainan University (KYQD1656).

More Information
  • Received Date: May 14, 2017
  • Available Online: October 31, 2022
  • Published Date: December 27, 2017
  • Cytoplasmic male sterility (CMS) is a maternal genetic trait widely found in higher plants. CMS is not only a favorable material for studying the interaction between mitochondrial and nuclear genes, but also an important basis for the utilization of plant heterosis, with its molecular mechanism the focus of current research. Evidence suggests that mitochondrial genes are closely related to CMS. With the continuous development of molecular biology and genetics, many plant fertility restoration (Rf) genes have been mapped and cloned, further elucidating the molecular mechanisms of plant CMS and Rf. This review summarizes the recent research advances in CMS and Rf-related genes in plants, and explores the application of the CMS/Rf system in breeding.
  • [1]
    汪志伟. 萝卜细胞质雄性不育胞质和核基因的分子标记的开发及其分子特征[D]. 武汉:华中农业大学, 2006.
    [2]
    马艳青, 邹学校. 蔬菜雄性不育研究与应用进展[J]. 作物研究, 2004(S1):414-420.
    [3]
    Chen L, Liu YG. Male sterility and fertility restoration in crops[J]. Annu Rev Plant Biol, 2014, 65(1):579-606.
    [4]
    Hu J, Huang WC, Huang Q, Qin XJ, Yu CC, Wang LL, Li SQ, Zhu RS, Zhu YG. Mitochondria and cytoplasmic male sterility in plants[J]. Mitochondrion, 2014, 19:282-288.
    [5]
    Chase CD. Cytoplasmic male sterility:a window to the world of plant mitochondrial-nuclear interactions[J]. Trends Genet, 2007, 23(2):81-90.
    [6]
    Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability[J]. New Phytol, 2010, 186(2):299-317.
    [7]
    Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J]. Nat Genet, 2013, 45(5):573-577.
    [8]
    Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D. Cytoplasmic male sterility of rice with Boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell, 2006, 18(3):676-687.
    [9]
    Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice[J]. Plant J, 2008, 55(4):619-628.
    [10]
    Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T. A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants[J]. Plant J, 2008, 54(6):1027-1036.
    [11]
    Nizampatnam NR, Doodhi H, Narasimhan YK, Mulpuri S, Viswanathaswamy DK. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants[J]. Planta, 2009, 229(4):987-1001.
    [12]
    Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility[J]. Plant Cell, 2008, 20(12):3331-3345.
    [13]
    Das S, Sen S, Chakraborty A, Chakraborti P, Maiti MK, Basu A, Basu D, Sen SK. An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica[J]. BMC Plant Biol, 2010, 10(1):39.
    [14]
    Kumar P, Vasupalli N, Srinivasan R, Bhat SR. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana[J]. J Exp Bot, 2012, 63(8):2921-2932.
    [15]
    Hammani K, Giege P. RNA metabolism in plant mitochondria[J]. Trends Plant Sci, 2014, 19(6):380-389.
    [16]
    Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. RNA editing in plants and its evolution[J]. Annu Rev Genet, 2013, 47:335-352.
    [17]
    Ichinose M, Sugita M. RNA editing and its molecular mechanism in plant organelles[J]. Genes, 2016, 8(1):5.
    [18]
    Gillman JD, Bentolila S, Hanson MR. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus[J]. Plant J, 2007, 49(2):217-227.
    [19]
    Fujii S, Toriyama K, Nasrallah JB. Suppressed expression of "RETROGRADE-REGULATED MALE STERILITY" restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc Natl Acad Sci USA, 2009, 106(23):9513-9518.
    [20]
    Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complexⅢ in Honglian cytoplasmic male sterile rice[J]. New Phytol, 2013, 198(2):408-418.
    [21]
    Ding X, Chen Q, Bao C, Ai A, Zhou Y, Li S, Xie H, Zhu Y, Cai Y, Peng X. Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption[J]. Springerplus, 2016, 5(1):1125.
    [22]
    Dewey RE, Levings CS, Timothy DH. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm[J]. Cell, 1986, 44(3):439-449.
    [23]
    赵荣敏, 王迎春, 范云六. 油菜波里马胞质雄性不育相关线粒体基因orf224在大肠杆菌中的克隆和表达[J]. 农业生物技术学报, 1996(1):15-22.

    Zhao RM, Wang YC, Fan YL. The cloning and expression of orf224 gene associated with Polima cytoplasmic male sterility of Brassica napus in E. coli[J]. Journal of Agricultural Biotechnology, 1996(1):15-22.
    [24]
    Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae[J]. Biochimie, 2005, 87(12):1089-1100.
    [25]
    Liu F, Cui X, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize[J]. Plant Cell, 2001, 13(5):1063-1078.
    [26]
    Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R. An essential pentatricopeptide repeat protein facilitates 5' maturation and translation initiation of rps3 mRNA in maize mitochondria[J]. Plant Cell, 2012, 24(7):3087-3105.
    [27]
    Fujii S, Sato N, Shikanai T. Mutagenesis of individual pentatricopeptide repeat motifs affects RNA binding activity and reveals functional partitioning of Arabidopsis PROTON GRADIENT REGULATION3[J]. Plant Cell, 2013, 25(8):3079-3088.
    [28]
    Ke J, Chen RZ, Ban T, Zhou XE, Gu X, Tan ME, Chen C, Kang Y, Brunzelle JS, Zhu JK. Structural basis for RNA recognition by a dimeric PPR-protein complex[J]. Nat Struct Mol Biol, 2013, 20(12):1377-1382.
    [29]
    Liu YJ, Xiu ZH, Meeley R, Tan BC. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize[J]. Plant Cell, 2013, 25(3):868-883.
    [30]
    Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang HW. Structural basis for the modular recognition of single-stranded RNA by PPR proteins[J]. Nature, 2013, 504(7478):168-171.
    [31]
    Barkan A, Small I. Pentatricopeptide repeat proteins in plants[J]. Annu Rev Plant Biol, 2014, 65(1):451-442.
    [32]
    Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants[J]. Proc Natl Acad Sci USA, 2002, 99(16):10887-10892.
    [33]
    Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J]. Plant J, 2003, 35(2):262-272.
    [34]
    Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4(6):588-594.
    [35]
    Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish[J]. Plant J, 2003, 34(4):407-415.
    [36]
    Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.)[J]. Plant J, 2004, 37(3):315-325.
    [37]
    Klein R, Klein P, Mullet J, Minx P, Rooney W, Schertz K. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not pre-sent in the colinear region of rice chromosome 12[J]. Theor Appl Genet, 2005, 111(6):994-1012.
    [38]
    Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J]. Plant J, 2003, 35(2):262-272.
    [39]
    Kazama T, Toriyama K. Whole mitochondrial genome sequencing and re-examination of a cytoplasmic male sterility-associated gene in Boro-Taichung-type cytoplasmic male sterile rice[J]. PloS One, 2016, 11(7):e0159379.
    [40]
    Zhang H, Che J, Ge Y, Pei Y, Zhang L, Liu Q, Gu M, Tang S. Ability of Rf5 and Rf6 to restore fertility of chinsu-rah BoroⅡ -type cytoplasmic male sterile Oryza sativa (ssp. japonica) lines[J]. Rice, 2017, 10(1):2.
    [41]
    Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J, 2011, 65(3):359-367.
    [42]
    Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162[J]. Plant Cell, 2012, 24(1):109-122.
    [43]
    Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility[J]. Proc Natl Acad Sci USA, 2015, 112(48):14984-14989.
    [44]
    Igarashi K, Kazama T, Toriyama K. A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-type cytoplasmic male sterile rice[J]. Plant Cell Physiol, 2016, 57(10):2187-2193.
    [45]
    Kazama T, Toriyama K. A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein[J]. Rice, 2014, 7:28.
    [46]
    Pranathi K, Viraktamath BC, Neeraja CN, Balachandran SM, Prasad ASH, Rao PK,et al. Development and validation of candidate gene-specific markers for the major fertility restorer genes, Rf4 and Rf3 in rice[J]. Mol Bree-ding, 2016, 36(10):145.
    [47]
    Fujii S, Yamada M, Fujita M, Itabashi E, Hamada K, Yano K, Kurata N, Toriyama K. Cytoplasmic-nuclear geno-mic barriers in rice pollen development revealed by compa-rison of global gene expression profiles among five independent cytoplasmic male sterile lines[J]. Plant Cell Physiol, 2010, 51(4):610-620.
    [48]
    Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA. Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility[J]. Plant Cell, 1998, 10(7):1163.
    [49]
    Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proc Natl Acad Sci USA, 2012, 109(7):2654-2659.
    [50]
    Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Res, 2012, 22(4):649-660.
    [51]
    Hu JH, Chen XJ, Zhang HY, Ding Y. Genome-wide analysis of DNA methylation in photoperiod-and thermo-sensitive male sterile rice Peiai 64S[J]. BMC Genomics, 2015, 16:1-14.
    [52]
    Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X,et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proc Natl Acad Sci USA, 2016, 113(52):15144-15149.
    [53]
    Puchta H. Applying CRISPR/Cas for genome engineering in plants:the best is yet to come[J]. Curr Opin Plant Biol, 2016, 36:1-8.
    [54]
    Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL. CRISPR-P 2.0:an improved CRISPR-Cas9 tool for genome editing in plants[J]. Mol Plant, 2017, 10(3):530-532.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (981) PDF downloads (1083) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return