Citation: | Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144 |
[1] |
Gilman AG. G proteins:transducers of receptor-generated signals[J]. Annu Rev Biochem, 1987, 56(56):615-649.
|
[2] |
Temple BR, Jones AM. The plant heterotrimeric G-protein complex[J]. Annu Rev Plant Biol, 2007, 58(1):249-266.
|
[3] |
Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions[J]. Physiol Rev, 2005, 85(4):1159-1204.
|
[4] |
肖振, 赵琪, 张川芳, 王小丽, 王全华,等. 蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制[J]. 植物科学学报, 2016, 34(6):949-961.
Xiao Z, Zhao Q, Zhang CF, Wang XL, Wang QH, et al. Abiotic stress response mechanism of oilseed rape (Brassica napus L.) revealed from proteomics[J]. Plant Science Journal, 2016, 34(6):949-961.
|
[5] |
Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signaling in the plant kingdom[J]. Open Biol, 2013, 3(3):120-186.
|
[6] |
费澄, 徐正进, 徐铨. 植物异三聚体G蛋白调控系统研究进展[J]. 科学通报, 2016, 61(34):3661-3671.
Fei C, Xu ZJ, Xu Q. Heterotrimeric G protein signaling in plant[J]. Chinese Science Bulletin, 2016, 61(34):3661-3671.
|
[7] |
朱莺, 黄继荣. 植物异三聚体G蛋白研究进展[J]. 植物生理学通讯, 2010, 46(4):309-316.
Zhu Y, Huang JR. Recent progresses in plant heterotrimeric G-proteins[J]. Plant Physiology Journal, 2010, 46(4):309-316.
|
[8] |
崔永涛, 吴立文, 郭龙彪, 胡兴明. 水稻异源三聚体G蛋白生理功能的研究进展[J]. 中国水稻科学, 2015, 29(5):546-558.
Cui YT, Wu LW, Guo LB, Hu XM. Research progress in physiologic functions of heterotrimeric G protein in rice[J]. China Journal Rice Science, 2015, 29(5):546-558.
|
[9] |
Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S. Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean[J]. PLoS One, 2011, 6(8):e23361.
|
[10] |
Bisht NC, Jez JM, Pandey S. An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks[J]. New Phytol, 2011, 190(1):35-48.
|
[11] |
Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, et al. Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis[J]. Plant Cell, 2007, 19(4):1235-1250.
|
[12] |
Thung L, Chakravorty D, Trusov Y, Jones AM, Botella JR. Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation[J]. PLoS One, 2013, 8(3):e58503.
|
[13] |
Trusov Y, Zhang W, Assmann SM, Botella JR. Ggamma1+ Ggamma2 not equal to Gbeta:heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants[J]. Plant Physiol, 2008, 147(2):636-649.
|
[14] |
Li JH, Liu YQ, Lü P, Lin HF, Bai Y, et al. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis[J]. Plant Physiol, 2009, 150(1):114-124.
|
[15] |
Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls[J]. Cell Res, 2008, 18(9):949-960.
|
[16] |
Mao H, Sun S, Yao J, Wang C, Yu S, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA, 2010, 107(45):19579-19584.
|
[17] |
Chen JG, Willard FS, Huang J, Liang J, Chasse SA, et al. A seven-transmembrane RGS protein that modulates plant cell proliferation[J]. Science, 2003, 301(5640):1728-1731.
|
[18] |
Jones JC, Duffy JW, Machius M, Temple BR, Dohlman HG, Jones AM. The crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation[J]. Sci Signal, 2011, 4(159):RA8.
|
[19] |
Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism[J]. Annu Rev Plant Biol, 2015, 66:369-392.
|
[20] |
Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate[J]. Nature, 2001, 410(6828):596-599.
|
[21] |
Wilkinson S, Davies WJ. ABA-based chemical signaling:the co-ordination of responses to stress in plants[J]. Plant Cell Environ, 2002, 25(2):195-210.
|
[22] |
Wang XQ, Ullah H, Jones AM, Assmann SM. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J]. Science, 2001, 292(5524):2070-2072.
|
[23] |
Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature, 2003, 423(6940):651-654.
|
[24] |
Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM. Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta-and RGS-deficient Arabidopsis lines[J]. Proc Natl Acad Sci USA, 2008, 105(24):8476-8481.
|
[25] |
Xu DB, Chen M, Ma YN, Xu ZS, Li LC, et al. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis[J]. PLoS One, 2015, 10(1):e0116385.
|
[26] |
Chakravorty D, Trusov Y, Zhang W, Acharya BR, Shea-han MB, et al. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K-channel regulation and morphological development in Arabidopsis thaliana[J]. Plant J, 2011, 67(5):840-851.
|
[27] |
Li JH, Liu YQ, Lü P, Lin HF, Bai Y, et al. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis[J]. Plant Physiol, 2009, 150(1):114-124.
|
[28] |
Ge XM, Cai HL, Lei X, Zhou X, Yue M, He JM. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis[J]. Plant J, 2015, 82(1):138-150.
|
[29] |
Shi C, Qi C, Ren H, Huang A, Hei S, She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis[J]. Plant J, 2015, 82(2):280-301.
|
[30] |
Nilson SE, Assmann SM. The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency[J]. Plant Physiol, 2010, 152(4):2067-2077.
|
[31] |
Nilson SE, Assmann SM. Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability[J]. New Phytol, 2010, 185(3):734-746.
|
[32] |
Yadav DK, Shukla D, Tuteja N. Rice heterotrimeric G-protein alpha subunit (RGA1):in silico analysis of the gene and promoter and its upregulation under abiotic stress[J]. Plant Physiol Biochem, 2013, 63:262-271.
|
[33] |
Yadav DK, Islam SM, Tuteja N. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress[J]. Plant Signal Behav, 2012, 7(7):733-740.
|
[34] |
Yadav DK, Shukla D, Tuteja N. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1)[J]. Plant Signal Behav, 2014, 9(5):e28890.
|
[35] |
Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, et al. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation[J]. J Exp Bot, 2015, 66(20):6371-6384.
|
[36] |
Ferrero-Serrano Á, Assmann SM. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tole-rance during the vegetative phase in the dwarf rice mutantd1[J]. J Exp Bot, 2016, 67(11):3433-3443.
|
[37] |
Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum):role in salinity and heat stress and cross-talk with phospholipase C[J]. Plant J, 2007, 51(4):656-69.
|
[38] |
Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM. Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex[J]. BMC Plant Biol, 2014, 14:129.
|
[39] |
Urano D, Colaneri A, Jones AM. Gα modulates salt-induced cellular senescence and cell division in rice and maize[J]. J Exp Bot, 2014, 65(22):6553-6561.
|
[40] |
Yu Y, Assmann SM. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response[J]. Plant Cell Environ, 2015, 38(10):2143-2156.
|
[41] |
Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS[J]. Planta, 2017, 245(2):367-383.
|
[42] |
Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, et al. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana[J]. Plant Mol Biol, 2015, 89(6):559-576.
|
[43] |
Chakraborty N, Singh N, Kaur K, Raghuram N. G-protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis[J]. Front Plant Sci, 2015, 6:1000.
|
[44] |
Lee CS, Ahn W, Choi YE. The G-protein alpha-subunit gene CGA1 is involved in regulation of resistance to heat and osmotic stress in Chlamydomonas reinhardtii[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(2):29-39.
|
[45] |
Jangam AP, Pathak RR, Raghuram N. Microarray analysis of rice d1(RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold[J]. Front Plant Sci, 2016, 7:11.
|
[46] |
Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
|
[47] |
Sun H, Qian Q, Wu K, Luo J, Wang S, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nat Genet, 2014, 46(6):652-656.
|
[48] |
Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone[J]. Plant Cell, 2005, 17(3):957-970.
|
[49] |
马鲜歌, 贺军民. 异三聚体G蛋白在UV-B诱导拟南芥气孔关闭中的作用[J]. 中国农业科学, 2012, 45(5):848-853.
Ma XG, He JM. Role of heterotrimeric G protein in UV-B-induced Arabidopsis stomatal closure[J]. China Agriculture Science, 2012, 45(5):848-853.
|
[50] |
He JM, Ma XG, Zhang Y, Sun TF, Xu FF, et al. Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves[J]. Plant Physiol, 2013, 161(3):1570-1583.
|
[51] |
Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, et al. Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants[J]. J Exp Bot, 2013, 64(14):4517-4527.
|
[52] |
Li YY, Tang XL, Yang LG, Yu YX, Li XF. Possible involvement of heterotrimeric G-protein signaling in Al-induced secretion of organic acid anions in Arabidopsis and rye[J]. Plant Soil, 2015, 388:55-63.
|