Advance Search
Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144
Citation: Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144

Advances on the role of heterotrimeric G proteins in plant abiotic stress responses

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31471562, 31701494), Earmarked Fund for China Agriculture Research System (CARS-08-A4), and Scientific Research Foundation for Doctor of Guizhou Normal University (11904/0517051).

More Information
  • Received Date: July 23, 2017
  • Available Online: October 31, 2022
  • Published Date: February 27, 2018
  • Heterotrimeric GTP-binding proteins, which are comprised of Gα, Gβ, and Gγ subunits, are evolutionarily conserved signal transduction molecules in eukaryotes. In plants, heterotrimeric G not only plays an important regulatory role in growth and development, but also participates in the regulation of multiple abiotic stress responses. This review focuses on the roles and possible regulation mechanisms of heterotrimeric G in the abiotic stress responses of plants, and puts forward prospects for future research. This paper will provide reference for further studies on the detailed regulation mechanism of heterotrimeric G proteins in the abiotic stress responses of plants.
  • [1]
    Gilman AG. G proteins:transducers of receptor-generated signals[J]. Annu Rev Biochem, 1987, 56(56):615-649.
    [2]
    Temple BR, Jones AM. The plant heterotrimeric G-protein complex[J]. Annu Rev Plant Biol, 2007, 58(1):249-266.
    [3]
    Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions[J]. Physiol Rev, 2005, 85(4):1159-1204.
    [4]
    肖振, 赵琪, 张川芳, 王小丽, 王全华,等. 蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制[J]. 植物科学学报, 2016, 34(6):949-961.

    Xiao Z, Zhao Q, Zhang CF, Wang XL, Wang QH, et al. Abiotic stress response mechanism of oilseed rape (Brassica napus L.) revealed from proteomics[J]. Plant Science Journal, 2016, 34(6):949-961.
    [5]
    Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signaling in the plant kingdom[J]. Open Biol, 2013, 3(3):120-186.
    [6]
    费澄, 徐正进, 徐铨. 植物异三聚体G蛋白调控系统研究进展[J]. 科学通报, 2016, 61(34):3661-3671.

    Fei C, Xu ZJ, Xu Q. Heterotrimeric G protein signaling in plant[J]. Chinese Science Bulletin, 2016, 61(34):3661-3671.
    [7]
    朱莺, 黄继荣. 植物异三聚体G蛋白研究进展[J]. 植物生理学通讯, 2010, 46(4):309-316.

    Zhu Y, Huang JR. Recent progresses in plant heterotrimeric G-proteins[J]. Plant Physiology Journal, 2010, 46(4):309-316.
    [8]
    崔永涛, 吴立文, 郭龙彪, 胡兴明. 水稻异源三聚体G蛋白生理功能的研究进展[J]. 中国水稻科学, 2015, 29(5):546-558.

    Cui YT, Wu LW, Guo LB, Hu XM. Research progress in physiologic functions of heterotrimeric G protein in rice[J]. China Journal Rice Science, 2015, 29(5):546-558.
    [9]
    Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S. Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean[J]. PLoS One, 2011, 6(8):e23361.
    [10]
    Bisht NC, Jez JM, Pandey S. An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks[J]. New Phytol, 2011, 190(1):35-48.
    [11]
    Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, et al. Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis[J]. Plant Cell, 2007, 19(4):1235-1250.
    [12]
    Thung L, Chakravorty D, Trusov Y, Jones AM, Botella JR. Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation[J]. PLoS One, 2013, 8(3):e58503.
    [13]
    Trusov Y, Zhang W, Assmann SM, Botella JR. Ggamma1+ Ggamma2 not equal to Gbeta:heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants[J]. Plant Physiol, 2008, 147(2):636-649.
    [14]
    Li JH, Liu YQ, Lü P, Lin HF, Bai Y, et al. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis[J]. Plant Physiol, 2009, 150(1):114-124.
    [15]
    Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls[J]. Cell Res, 2008, 18(9):949-960.
    [16]
    Mao H, Sun S, Yao J, Wang C, Yu S, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA, 2010, 107(45):19579-19584.
    [17]
    Chen JG, Willard FS, Huang J, Liang J, Chasse SA, et al. A seven-transmembrane RGS protein that modulates plant cell proliferation[J]. Science, 2003, 301(5640):1728-1731.
    [18]
    Jones JC, Duffy JW, Machius M, Temple BR, Dohlman HG, Jones AM. The crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation[J]. Sci Signal, 2011, 4(159):RA8.
    [19]
    Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism[J]. Annu Rev Plant Biol, 2015, 66:369-392.
    [20]
    Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate[J]. Nature, 2001, 410(6828):596-599.
    [21]
    Wilkinson S, Davies WJ. ABA-based chemical signaling:the co-ordination of responses to stress in plants[J]. Plant Cell Environ, 2002, 25(2):195-210.
    [22]
    Wang XQ, Ullah H, Jones AM, Assmann SM. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J]. Science, 2001, 292(5524):2070-2072.
    [23]
    Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature, 2003, 423(6940):651-654.
    [24]
    Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM. Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta-and RGS-deficient Arabidopsis lines[J]. Proc Natl Acad Sci USA, 2008, 105(24):8476-8481.
    [25]
    Xu DB, Chen M, Ma YN, Xu ZS, Li LC, et al. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis[J]. PLoS One, 2015, 10(1):e0116385.
    [26]
    Chakravorty D, Trusov Y, Zhang W, Acharya BR, Shea-han MB, et al. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K-channel regulation and morphological development in Arabidopsis thaliana[J]. Plant J, 2011, 67(5):840-851.
    [27]
    Li JH, Liu YQ, Lü P, Lin HF, Bai Y, et al. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis[J]. Plant Physiol, 2009, 150(1):114-124.
    [28]
    Ge XM, Cai HL, Lei X, Zhou X, Yue M, He JM. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis[J]. Plant J, 2015, 82(1):138-150.
    [29]
    Shi C, Qi C, Ren H, Huang A, Hei S, She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis[J]. Plant J, 2015, 82(2):280-301.
    [30]
    Nilson SE, Assmann SM. The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency[J]. Plant Physiol, 2010, 152(4):2067-2077.
    [31]
    Nilson SE, Assmann SM. Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability[J]. New Phytol, 2010, 185(3):734-746.
    [32]
    Yadav DK, Shukla D, Tuteja N. Rice heterotrimeric G-protein alpha subunit (RGA1):in silico analysis of the gene and promoter and its upregulation under abiotic stress[J]. Plant Physiol Biochem, 2013, 63:262-271.
    [33]
    Yadav DK, Islam SM, Tuteja N. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress[J]. Plant Signal Behav, 2012, 7(7):733-740.
    [34]
    Yadav DK, Shukla D, Tuteja N. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1)[J]. Plant Signal Behav, 2014, 9(5):e28890.
    [35]
    Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, et al. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation[J]. J Exp Bot, 2015, 66(20):6371-6384.
    [36]
    Ferrero-Serrano Á, Assmann SM. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tole-rance during the vegetative phase in the dwarf rice mutantd1[J]. J Exp Bot, 2016, 67(11):3433-3443.
    [37]
    Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum):role in salinity and heat stress and cross-talk with phospholipase C[J]. Plant J, 2007, 51(4):656-69.
    [38]
    Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM. Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex[J]. BMC Plant Biol, 2014, 14:129.
    [39]
    Urano D, Colaneri A, Jones AM. Gα modulates salt-induced cellular senescence and cell division in rice and maize[J]. J Exp Bot, 2014, 65(22):6553-6561.
    [40]
    Yu Y, Assmann SM. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response[J]. Plant Cell Environ, 2015, 38(10):2143-2156.
    [41]
    Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS[J]. Planta, 2017, 245(2):367-383.
    [42]
    Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, et al. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana[J]. Plant Mol Biol, 2015, 89(6):559-576.
    [43]
    Chakraborty N, Singh N, Kaur K, Raghuram N. G-protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis[J]. Front Plant Sci, 2015, 6:1000.
    [44]
    Lee CS, Ahn W, Choi YE. The G-protein alpha-subunit gene CGA1 is involved in regulation of resistance to heat and osmotic stress in Chlamydomonas reinhardtii[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(2):29-39.
    [45]
    Jangam AP, Pathak RR, Raghuram N. Microarray analysis of rice d1(RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold[J]. Front Plant Sci, 2016, 7:11.
    [46]
    Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
    [47]
    Sun H, Qian Q, Wu K, Luo J, Wang S, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nat Genet, 2014, 46(6):652-656.
    [48]
    Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone[J]. Plant Cell, 2005, 17(3):957-970.
    [49]
    马鲜歌, 贺军民. 异三聚体G蛋白在UV-B诱导拟南芥气孔关闭中的作用[J]. 中国农业科学, 2012, 45(5):848-853.

    Ma XG, He JM. Role of heterotrimeric G protein in UV-B-induced Arabidopsis stomatal closure[J]. China Agriculture Science, 2012, 45(5):848-853.
    [50]
    He JM, Ma XG, Zhang Y, Sun TF, Xu FF, et al. Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves[J]. Plant Physiol, 2013, 161(3):1570-1583.
    [51]
    Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, et al. Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants[J]. J Exp Bot, 2013, 64(14):4517-4527.
    [52]
    Li YY, Tang XL, Yang LG, Yu YX, Li XF. Possible involvement of heterotrimeric G-protein signaling in Al-induced secretion of organic acid anions in Arabidopsis and rye[J]. Plant Soil, 2015, 388:55-63.
  • Related Articles

    [1]Zeng Weiying, Wang Dezhi, Ye Chen, Gong Yu, Wang Yuxi, Zhang Quanfa. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling[J]. Plant Science Journal, 2025, 43(1): 52-62. DOI: 10.11913/PSJ.2095-0837.24033
    [2]Guan Junhao, Ye Yanhui, Shao Xiaoming, Wang Ruihong, Jiang Yanbin. Effects of intercropping forage on weed community composition and diversity in an apple orchard in the river valley area of Nyingchi, Tibet[J]. Plant Science Journal, 2024, 42(1): 23-33. DOI: 10.11913/PSJ.2095-0837.23100
    [3]Wang Jun-Wei, Chen Yong-Hao, La Qiong. Diversity, distribution patterns, and floristic characteristics of seed plants endemic to Tibet, China[J]. Plant Science Journal, 2023, 41(5): 594-603. DOI: 10.11913/PSJ.2095-0837.22298
    [4]Liu Yong-Ying, Chai Xiao-Liang, Liao Yu-Jia, Song Xiao-Tong, Shao Xiao-Ming. Bryum marratii Hook. & Wilson (Bryaceae, Musci) reported new to China[J]. Plant Science Journal, 2023, 41(2): 159-165. DOI: 10.11913/PSJ.2095-0837.22155
    [5]Fan Ying-Jie, Liao Yu-Jia, Wang Meng-Zheng, Liu Ling, Song Xiao-Tong, Shao Xiao-Ming. New distribution and distribution prediction of the endemic species Encalypta asiatica J. C. Zhao & L. Li in Tibet, China[J]. Plant Science Journal, 2021, 39(4): 358-366. DOI: 10.11913/PSJ.2095-0837.2021.40358
    [6]Tao Lian, Yang Wen-Yuan, Xie Hong-Jiang, Pan Cui-Ping, Li Yan-Feng, Li Ju, Huan Yun-Min. Quality evaluation of ‘Golden Delicious’ apple from different ecological regions in Tibet and its response to meteorological factors[J]. Plant Science Journal, 2018, 36(1): 86-93. DOI: 10.11913/PSJ.2095-0837.2018.10086
    [7]WANG Wen-Tsai. Delphinium pingwuense, a New Species of Ranunculaceae from Sichuan Province, China[J]. Plant Science Journal, 2015, 33(1): 33-35. DOI: 10.11913/PSJ.2095-0837.2015.10033
    [8]WANG Wen-Tsai. Thalictrum yuexiense, a New Species of Ranunculaceae from Anhui Province, China[J]. Plant Science Journal, 2014, 32(6): 567-569. DOI: 10.11913/PSJ.2095-0837.2014.60567
    [9]WANG Wen-Tsai. Two New Species of Urticaceae from Tibet[J]. Plant Science Journal, 2014, 32(1): 24-26. DOI: 10.3724/SP.J.1142.2014.10024
    [10]WANG Wen-Cai. Aconitum rotundocassideum, a New Species of Ranunculaceae from Shaanxi[J]. Plant Science Journal, 2013, 31(6): 533-535. DOI: 10.3724/SP.J.1142.2013.60533

Catalog

    Article views (843) PDF downloads (1287) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return