Advance Search
Chen Yin-Ping, Ke Yun-Qi, Yang Zhi-Juan, Yang Bo, Yan Zhi-Qiang, Yu Pei-Dong. Generation of endogenous NO and its ameliorating effects on oxidative damage in Bidens pilosa L. seedlings under Pb stress[J]. Plant Science Journal, 2018, 36(2): 264-272. DOI: 10.11913/PSJ.2095-0837.2018.20264
Citation: Chen Yin-Ping, Ke Yun-Qi, Yang Zhi-Juan, Yang Bo, Yan Zhi-Qiang, Yu Pei-Dong. Generation of endogenous NO and its ameliorating effects on oxidative damage in Bidens pilosa L. seedlings under Pb stress[J]. Plant Science Journal, 2018, 36(2): 264-272. DOI: 10.11913/PSJ.2095-0837.2018.20264

Generation of endogenous NO and its ameliorating effects on oxidative damage in Bidens pilosa L. seedlings under Pb stress

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31560161, 31260089, 31640012).

More Information
  • Received Date: September 24, 2017
  • Available Online: October 31, 2022
  • Published Date: April 27, 2018
  • In this study, the generation patterns of endogenous nitric oxide (NO) and reactive oxygen species (ROS) and the changes in root activity of Bidens pilosa L. seedlings under Pb stress were investigated, with the ameliorating effects of NO on oxidative damage also analyzed. Results showed that the content of NO in the leaves increased with the increase in Pb concentration within the range of 0-1000 mg/L, and the content of NO in the roots first increased and then decreased but was still higher than that in the control. In the Pb concentration range of 0-400 mg/L, the content of NO in the stem was the same as that of the control, but was lower than that of the control when the concentration was greater than 600 mg/L. At a concentration of 600 mg/L, Pb significantly increased NO synthase (NOS) and nitrate reductase (NR) activities in the roots, stems, and leaves and increased nitrite ion (NO2-) and carotenoid (Car) content in the stems and leaves. NOS, NR, NO2-, and Car significantly influenced NO content in the leaves and NOS was the major pathway for the formation of endogenous NO in the roots. Pb stress significantly increased the superoxide anion (O2·-) production rate, hydrogen peroxide (H2O2) concentration, malondialdehyde (MDA) content, and relative electrical conductivity (REC), resulting in severe membrane lipid peroxidation injury in the B. pilosa L. seedlings. However, NO induced by Pb stress may have reduced the production of ROS in the roots, promoted root activity in seedlings, and relieved membrane lipid peroxidation damage caused by stress.
  • [1]
    张富运, 陈永华, 吴晓芙, 梁希. 铅锌超富集植物及耐性植物筛选研究进展[J]. 中南林业科技大学学报, 2012, 32(12):92-96.

    Zhang FY,Chen YH,Wu XF,Liang X.Research advances on screening of hyperaccumulator and tolerant plant species of Pb-Zn[J]. Journal of Central South University of Forestry & Technology, 2012, 32(12):92-96.
    [2]
    段德超,于明革,施积炎. 植物对铅的吸收、转运、积累和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1):287-296.

    Duan DC,Yu MG,Shi JY.Research advance in uptake,translocation,accumulation and detoxification of Pb in plant[J]. Chinese Journal of Applied Ecology, 2014, 25(1):287-296.
    [3]
    赵静,孙海娟,冯叙桥.食品中重金属铅污染状况及其检测技术研究进展[J].食品与发酵工业,2014(9):122-127.

    Zhao J, Sun HJ,Feng XQ. Research progress on the pollution of heavy metal lead and its detection technology in food[J]. Food and Fermentation Industries, 2014(9):122-127.
    [4]
    魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J].环境科学, 2008, 29(10):2912-2918.

    Wei SH,Yang CJ,Zhou QX.Hyperaccumulative characteristics of 7 widely distributing weed species in composite family especially Bidens pilosa to heavy metals[J]. Environmental Science, 2008, 29(10):2912-2918.
    [5]
    谌金吾.三叶鬼针草(Bidens pilosa L.)对重金属Cd、Pb胁迫的响应与修复潜能研究[D].重庆:西南大学, 2013.
    [6]
    孙约兵,周启星,王林,刘维涛,刘睿.三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J].环境科学,2009,30(10):3028-3035.

    Sun YB, Zhou QX, Wang L, Liu WT, Liu R. Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa L. seedlings[J]. Environmental Science, 2009, 30(10):3028-3035.
    [7]
    张艳艳,章文华,薛丽,傅向荣.一氧化氮在植物生长发育和抗逆过程中的作用研究进展[J]. 西北植物学报, 2012, 32(4):835-842.

    Zhang YY,Zhang WH,Xue L,Fu XR.Advance on NO function in plant growth,development and abiotic stress tolerance[J]. Acta Botanica Boreali-Occidentalia Sinica,2012, 32(4):835-842.
    [8]
    Zheng CF,Jiang D,Liu FL,Dai TB,Liu WC.Exogenous nitric oxide improve seed germination in wheat against mitochondrial oxidative damage induced by high salinity environment[J]. Environ Exp Bot, 2009, 67(1):222-227.
    [9]
    Song LL,Ding W,Shen J,Zhang ZG,Bi YR,Zhang LX.Nitric oxide mediates abscisic acid induced thermoto-lerance in the calluses from two ecotypes of reed under heat stress[J]. Plant Sci, 2008, 175:826-832.
    [10]
    Xu YF,Sun XL,Jin JW,Zhou H.Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue[J]. J Plant Physiol, 2010, 167(7):512-518.
    [11]
    Kováčik J, Klejdus B, Babula P, Hedbavny J.Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea[J]. Algal Res, 2015, 8:45-52.
    [12]
    陈康,李杰,唐静,赵方贵,刘新.一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累[J].植物生理与分子植物学报, 2006, 32(5):577-582.

    Chen K,Li J,Tang J,Zhao FG,Liu X.Involvement of nitric oxide in regulation of salt stress-induced ABA accumulation in maize seedling[J].Journal of Plant Physiology and Molecular Biology, 2006, 32(5):577-582.
    [13]
    刘涛,覃新程,李维仁,周峰,李广永,辛华,巩艳青,辛钟成.淫羊藿苷和淫羊藿次苷Ⅱ对内皮细胞eNOS表达和NOS活性的影响[J]. 北京大学学报:医学版, 2011, 43(4):500-504.

    Liu T,Qin XC,Li WR,Zhou F,Li GY,Xin H,Gong YQ,Xin ZC.Effects of icariin and icarisideⅡon eNOS expression and NOS activity in porine aorta endothelial cells[J].Journal of Peking University:Medical Edition, 2011, 43(4):500-504.
    [14]
    李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2003:182-183, 260-261.
    [15]
    张小莉,王鹏程,宋纯鹏. 植物细胞过氧化氢的测定方法[J]. 植物学报, 2009, 44(1):103-106.

    Zhang XL, Wang PC, Song CP. Methods of detecting hydrogen peroxide in plant cells[J]. Chinese Bulletin of Botany, 2009, 44(1):103-106.
    [16]
    李忠光, 李江鸿, 杜朝坤, 黄号栋, 龚明.在单一提取系统中同时测定五种植物抗氧化酶[J]. 云南师范大学学报:自然科学版, 2002, 22(6):44-48.

    Li ZG,Li JH,Du CK,Huang HD,Gong M.Simulta-neous measurement of five antioxidant enzyme activities using a single extraction system[J]. Journal of Yunan Normal University:Natural Sciences Edition, 2002, 22(6):44-48.
    [17]
    李玲,李娘辉,蒋素梅,冷佳奕,王小菁.植物生理学模块实验指导[M]. 北京:科学出版社, 2009:78-86.
    [18]
    赵宝泉,万宇,杨世湖,余丽,晋玉宽,万建民.外源NO供体硝普钠(SNP)对重金属Cd胁迫下水稻幼苗膜脂过氧化及抗氧化酶的影响[J].江苏农业学报, 2010, 26(3):468-475.

    Zhao BQ,Wan Y,Yang SH,Yu L,Jin YK,Wang JM.Effects of exogenous nitric oxide donor SNP on membrane lipid peroxidation and activity of antioxidant enzyme in rice seedlings under Cd stress[J]. Jiangsu Journal of Agricultural Sciences, 2010, 26(3):468-475.
    [19]
    孙丽娜. 内源NO对铅胁迫下金丝草根细胞中Pb积累的影响[D]. 杭州:浙江工商大学, 2012.
    [20]
    王逸筠,李晓云,王建,崔秀敏.外源NO介导Cu2+胁迫下番茄幼苗活性氧与内源NO代谢的研究[J]. 生态毒理学报, 2014, 9(4):678-688.

    Wang YJ,Li XY,Wang J,Cui XM.Study on the meta-bolism pathway of ROS and NO of tomato seedlings mediated by exogenous NO under copper ion stress[J]. Asian Journal of Ecotoxicology, 2014, 9(4):678-688.
    [21]
    Pedroso MC,Magalhaes JR,Durzan D.Nitrie oxide induces cell death in Taxus cells[J].Plant Sci, 2000, 157(2):173-180.
    [22]
    Sang J,Jiang M,Lin F,Xu S, Zhang A, Tan M.Nitric oxide reduces hydrogen peroxide accumulation involved in water stress induced subcellular anti-oxidant defense in maize plants[J]. J IPB, 2008, 50(2):231-243.
    [23]
    张绪成,上官周平,高世铭.NO对植物生长发育的调控机制[J].西北植物学报, 2005, 25(4):812-818.

    Zhang XC,Shangguan ZP,Gao SM.Regulation mechanism of nitric oxide to plant growth and development[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(4):812-818.
    [24]
    夏海威,施国新,黄敏,吴娟.一氧化氮对植物重金属胁迫抗性的影响研究进展[J].生态学报, 2015, 35(1):3139-3147.

    Xia HW,Shi GX,Huang M,Wu J.Advances on effects of nitric oxide on resistances of plants to heavy metal stress[J]. Acta Ecologica Sinica, 2015, 35(1):3139-3147.
    [25]
    邵小杰,杨洪强,冉昆,姜倩倩,孙晓莉.水杨酸对镉胁迫下葡萄根系质膜ATPase和自由基的影响[J]. 中国农业科学, 2010, 43(7):1441-1447.

    Shao XJ,Yang HQ,Ran K,Jiang QQ,Sun XL.Effects of salicylic acid on plasma membrane ATPase and free radical of grape root under cadmium stress[J]. Scientia Agricultura Sinica, 2010, 43(7):1441-1447.
    [26]
    曹冰.一氧化氮在绿豆侧根发生过程中的作用研究[D]. 西安:陕西师范大学, 2005.
    [27]
    Hancock JT. NO synthase generation of nitric oxide in plants[J]. Period Biol, 2012,114(1):19-24.
    [28]
    Lea US,Ten Hoopen F,Provan F,Kaiser WM,Meyer C,Lillo C.Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue[J]. Planta, 2004, 219(1):59-65.
    [29]
    Lillo C, Meyer C, Lea US, Provan F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase[J]. J Exp Bot, 2004, 55(401):1275-1282.
    [30]
    Prerna S,Kavita S.Evidences for reduced metal uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings[J]. Plant Physiol Bioch, 2014, 83:180-184.
    [31]
    何俊瑜,王阳阳,任艳芳,周国强,杨良静.镉胁迫对不同水稻品种幼苗根系形态和生物特性的影响[J]. 生态环境学报, 2009, 18(5):1863-1868.

    He JY,Wang YY,Ren YF,Zhou GQ,Yang LJ.Effect of cadmium on root morphology and physiological characteristics of rice seedlings[J]. Ecology and Environmental Science, 2009, 18(5):1863-1868.
    [32]
    杨志娟, 陈银萍, 苏向楠, 郑怡, 蘧苗苗, 子轩. 外源NO对铅胁迫下三叶鬼针草幼苗活性氧代谢的影响[J]. 广西植物, 2015, 35(5):648-655.

    Yang ZJ,Chen YP,Su XN,Zhen Y,Qu MM,Zi X.Effect of exogenous NO on reactive oxygen metabolism of Bidens pilosa L. seedlings under lead stress[J]. Guihaia, 2015, 35(5):648-655.
    [33]
    邵小杰,杨洪强.氯化镉胁迫下葡萄根、叶内源一氧化氮和活性氧的生成[J].应用生态学报, 2010, 21(10):2666-2670.

    Shao XJ,Yang HQ.Endogenous NO and ROS generation in grape roots and leaves under CdCl2 stress[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2666-2670.
  • Related Articles

    [1]Liu Hong-Ling, Zhang Xin-Wan, Huang Wei, Zhang Yan-Ge, Zhao Hua. Advances in research on plant amino acid transporters[J]. Plant Science Journal, 2018, 36(4): 623-631. DOI: 10.11913/PSJ.2095-0837.2018.40623
    [2]Chen Ai-Ling, Gao Bao-Yan, Huang Luo-Dong, Wang Fei-Fei, Zhang Cheng-Wu. Effects of initial combined concentrations of nutrients on the growth and lipid accumulation of Eustigmatos cf. polyphem[J]. Plant Science Journal, 2018, 36(3): 420-430. DOI: 10.11913/PSJ.2095-0837.2018.30420
    [3]Xu Zi-Jun, Hu Qiang, Liu Guo-Xiang, Hu Zheng-Yu, Zhang Ting, Zhang Cheng-Wu. Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations[J]. Plant Science Journal, 2018, 36(3): 411-419. DOI: 10.11913/PSJ.2095-0837.2018.30411
    [4]ZHANG Jing-Yi, CHEN Hong-Yan, ZHANG Hong-Pei, ZHU Nan, DONG Juan-E. Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture[J]. Plant Science Journal, 2015, 33(1): 81-89. DOI: 10.11913/PSJ.2095-0837.2015.10081
    [5]BAN Jian-Jiao, FENG Jia, XIE Shu-Lian. Isolation and Screening of Microalgae with High-lipid Contents in Shanxi Province[J]. Plant Science Journal, 2013, 31(4): 415-421. DOI: 10.3724/SP.J.1142.2013.40415
    [6]JIN Tong-Xia, DONG Wen-Jing, GUO Meng, DAI Ke-Yan, YANG Cheng, XU Ting-Ting, MA Jian-Min. Effects of Carbon,Nitrogen,and Phosphorus Concentration in Eutrophic Wastewater on Total Lipids and Total Hydrocarbons of Botryococcus braunii[J]. Plant Science Journal, 2012, (3): 293-298. DOI: 10.3724/SP.J.1142.2012.30293
    [7]LU Chun-Fang, YIN Lin-Ke, MU Shu-Yong, ZHAO Feng-Xia, YU Shan-Shan. Extraction and Measurement of Total Protein and Amino Acids,Analysis the Identification Result of Antifreeze Protein in Ammopiptanthus nanus[J]. Plant Science Journal, 2007, 25(5): 531-534.
    [8]LI Ke-Ying, LI Jia-Ru. The Effects of Salicylic Acid on Lateral Roots Formation in Rape Seedlings[J]. Plant Science Journal, 2004, 22(4): 345-348.
    [9]Sun Zhonghai, Zhang Wencai, Qu Shengxiang, Ma Xiangtao. STUDIES ON THE FATTY ACIDS COMPOSITION OF THE CITRUS CELL MEMBRANE AND ITS RELATIONSHIP WITH THE COLD RESISTANCE[J]. Plant Science Journal, 1990, 8(1): 79-86.
    [10]Li Xiabing, Wang Hongdou, Guo yu, Wang Yajie, Zhu Dan. ISOLATION AND IDENTIFICATION OF CIS-5, 11, 14, 17 EICOSATRAENOIC ACID IN SEED OIL FROM PLANTS OF TAXODIACEAE[J]. Plant Science Journal, 1986, 4(2): 195-198.

Catalog

    Article views (717) PDF downloads (836) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return