Advance Search
Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
Citation: Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633

Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis

Funds: 

This work was supported by a grant from the Teaching Specimens Sub-Platform of the National Specimens Platform (http://mnh.scu.edu.cn).

More Information
  • Received Date: March 29, 2018
  • Available Online: October 31, 2022
  • Published Date: October 27, 2018
  • Armeniaca hongpingensis C. L. Li is a narrowly distributed species, which has been hypothesized to be a natural hybrid of A. vulgaris Lam. and A. mume Sieb. based on morphological similarity. However, related molecular phylogenetic research is still lacking. In this study, the phylogenetic relationship between A. hongpingensis and other Armeniaca species was investigated using individuals and seedlings of A. hongpingensis and individuals of five other Armeniaca species (e.g., A. vulgaris, A. mume, A. mume Sieb. var. bungo Makino). Two nuclear genes (ITS and SBEI) and two chloroplast genes (matK and ycf1b) were sequenced to reconstruct molecular phylogenetic trees. matK, ycf1b, and SBEI were also used to reconstruct a haplotype network. Phylogenetic analyses of both nuclear and chloroplast genes showed that the individuals and seedlings of A. hongpingensis grouped together with high bootstrap values (99/79, 71/81), independent of other Armeniaca species. The Bayesian phylogram based on ITS sequences showed that most individual and seedling clones of A. hongpingensis were grouped into two single clades with high bootstrap values (0.82, 0.97); the other clones clustered with A. vulgaris and A. mume var. bungo individuals; and no clones clustered with A. mume individuals. On SBEI and ycf1b loci, haplotypes of A. vulgaris, A. mume, and A. holosericea were not detected in A. hongpingensis; whereas on the matK locus, only haplotypes of A. vulgaris were detected in a few (2/9) seedlings of A. hongpingensis. These results suggest that A. hongpingensis is likely an independent species rather than a natural hybrid of A. vulgaris and A. mume, with a closer genetic relationship as well as detectable gene flow with A. vulgaris.
  • [1]
    Wu ZY, Raven PH, Hong DY. Flora of China:Vol. 9[M]. Beijing:Science Press, 2003.
    [2]
    王利兵. 我国3种杏的地理分布及其植物学性状[J]. 林业科学研究, 2010, 23(3):435-439.

    Wang LB. Geographic distribution and botanical characters of 3Armeniaca plant in China[J]. Forest Research, 2010, 23(3):435-439.
    [3]
    王家琼, 吴保欢, 崔大方, 羊海军, 黄峥, 齐安民. 基于30个形态性状的中国杏属(Armeniaca Scop.)植物分类学研究[J]. 植物资源与环境学报, 2016, 25(3):103-111.

    Wang JQ, Wu BH, Cui DF, Yang HJ, Huang Z, Qi AM. Taxonomic study on Armeniaca Scop. species in China based on thirty morphological characters[J]. Journal of Plant Resources and Environment, 2016, 25(3):103-111.
    [4]
    Layne REC, Bailey CH, Hough LF. Apricots[M]//Janick J, Moore JN, eds. Fruit Breeding:Tree and Tropical Fruits, Vol.Ⅱ. New York:John Wiley and Sons, 1996.
    [5]
    Shimada T, Haji T, Yamaguchi M, Takeda T, Nomura K, Yoshida M. Classification of mume (Prunus mume Sieb. et Zucc.) by RAPD assay[J]. J Jpn Soc Hortic Sci, 1994, 63(3):543-551.
    [6]
    Byrne DH. Isozyme phenotypes support the interspecific hybrid origin of Prunus xdasycarpa Ehrh[J]. Fruit Varieties J, 1993, 47(3):143-145.
    [7]
    Li M, Zhao Z, Miao XJ. Genetic diversity and relationships of apricot cultivars in north China revealed by ISSR and SRAP markers[J]. Sci Hortic, 2014, 173(3):20-28.
    [8]
    张加延, 吕亩南, 王志明. 杏属二新种[J]. 植物分类学报, 1999, 37(1):105-109.

    Zhang JT, Lü MN, Wang ZM. Two new species of the genus Armeniaca (Rosaceae)[J]. Acta Phytotaxonomica Sinica, 1999, 37(1):105-109.
    [9]
    杨红花, 陈学森, 冯宝春, 吴燕. 李梅杏类种质资源的RAPD分析[J]. 果树学报, 2007, 24(3):303-307.

    Yang HH, Chen XS, Feng BC, Wu Y. Assessment of Prunus armeniaca limeixing germplasm by RAPD[J]. Journal of Fruit Science, 2007, 24(3):303-307.
    [10]
    杨红花. 李梅杏种质资源的系统起源研究进展[J]. 泰山学院学报, 2010, 32(3):106-109.

    Yang HH. Advances in system origin of Prunus armeniaca limeixing J. Y. Zhang et Z. M. Wang germplasm[J]. Journal of Taishan University, 2010, 32(3):106-109.
    [11]
    俞德浚, 陆玲娣, 谷粹芝. 中国植物志:第38卷[M]. 北京:科学出版社, 1986.
    [12]
    包满珠. 我国川、滇、藏部分地区野梅种质资源及梅的系统学研究[D]. 北京:北京林业大学, 1991.
    [13]
    陈俊愉, 包满珠. 中国梅的植物学分类与园艺学分类[J]. 浙江农林大学学报, 1992(2):119-132.

    Chen JY, Bao MZ. Botanical classification and horticultural classification of Chinese Mei (Prunus mume) resources[J]. Journal of Zhejiang Forestry College, 1992(2):119-132.
    [14]
    China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants[J]. Proc Natl Acad Sci, 2011, 108(49):19641-19646.
    [15]
    Shi S, Li JL, Sun JH, Yu J, Zhou SL. Phylogeny and classification of Prunus sensu lato (Rosaceae)[J]. J Integr Plant Biol, 2013, 55(11):1069-1079.
    [16]
    Yu J, Xue JH, Zhou SL. New universal matK primers for DNA barcoding angiosperms[J]. J Syst Evol, 2011, 49(3):176-181.
    [17]
    Dong W, Xu C, Li C, Sun J, Zuo Y, et al.ycf1, the most promising plastid DNA barcode of land plants[J]. Sci Rep, 2015, 5:8348.
    [18]
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. Multiple sequence alignment with the Clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
    [19]
    Ronquist F, Huelsenbeck JP. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19(12):1572-1574.
    [20]
    Posada D, Crandall KA. Modeltest:testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.
    [21]
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2014, 32(1):268-274.
    [22]
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nat Methods, 2017, 14(6):587.
    [23]
    Librado P, Rozas J. DnaSP v5:a software for compre-hensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.
    [24]
    Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1):37-48.
    [25]
    Wendel JF, Doyle JJ. Phylogenetic incongruence:window into genome history and molecular evolution[M]//Soltis DE, Soltis PS, Doyle JJ, eds. Molecular Systematics of PlantsⅡ:DNA Sequencing. New York:Kluwer Academic Publisher, 1998.
    [26]
    Rieseberg LH, Whitton J, Linder CR. Molecular marker incongruence in plant hybrid zones and phylogenetic trees[J]. Plant Biol, 1996, 45(3):243-262.
    [27]
    Kumar LS. DNA markers in plant improvement:An overview[J]. Biotechnol Adv, 1999, 17(2-3):143-182.
  • Related Articles

    [1]Wang Xue, Li Zhen, Liu Yan-Ling, Liang Qiong. Response of ex-situ conservation plant flowering phenology to climate change in Wuhan[J]. Plant Science Journal, 2020, 38(1): 88-96. DOI: 10.11913/PSJ.2095-0837.2020.10088
    [2]Liu Meng-Ting, Wei Xin-Zeng, Jiang Ming-Xi. Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis[J]. Plant Science Journal, 2018, 36(3): 354-361. DOI: 10.11913/PSJ.2095-0837.2018.30354
    [3]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [4]YUAN Shan, MENG Ai-Ping, LI Jian-Qiang, WANG Heng-Chang. Population Genetic Structure and Variation of Endangered Cercidiphyllum japonicum in Shennongjia Area: The Mountain Barrier to Gene Flow[J]. Plant Science Journal, 2012, 30(4): 358-365. DOI: 10.3724/SP.J.1142.2012.40358
    [5]YANG Hui, CHEN Yuan-Yuan, XU Yong-Xing, LI Zuo-Zhou. Gene Flow Dynamics of ex-situ Conservation Populations in Two Endangered Isoetes Species:Genetic Implications for Reintroduction,Conservation and Management[J]. Plant Science Journal, 2011, 29(3): 319-330.
    [6]XU Dong-Yan. Study on the Morphological Characteristic of the Wind-damaged Slash in the Restorable Community of Jinyun Mountain Nature Reserve[J]. Plant Science Journal, 2007, 25(2): 158-162.
    [7]WANG Yong, LIU Yi-Fei, LIU Song-Bai, HUANG Hong-Wen. Ex situ Conservation of Plantago fengdouensis, an Endemic and Endangered Species within the Water-level-fluctuation Zone in Three Gorges Reservoir of Changjiang River[J]. Plant Science Journal, 2006, 24(6): 574-578.
    [8]WANG Yong, WU Jin-Qing, TAO Yong, LI Zuo-Zhou, HUANG Hong-Wen. Natural Distribution and Ex Situ Conservation of Endemic Species Myricaria laxiflora in Water-level-fluctuation Zone within Three-Gorges Reservoir Area of Changjiang River[J]. Plant Science Journal, 2003, 21(5): 415-422.
    [9]SHI Sheng-You, SHANG Jin, TIAN Hai-Yan, LI Xu-Guang. Distribution Pattern and Dynamics of Dominant Population in the Progression of Ecological Restoration of Evergreen Broadleaved Forest after Wind-damage in Jinyun Mountain[J]. Plant Science Journal, 2003, 21(4): 321-326.
    [10]Zhao Jiarong, Feng Shunliang, Chen Lu, Ni Xueming, Ao Binghua. A STUDY ON EX-SITU CONSERVATION OF THE RARE PLANT S HYGRORYZA ARISTATA[J]. Plant Science Journal, 1998, 16(1): 93-95.
  • Cited by

    Periodical cited type(7)

    1. 郭舒艳,靳含,温馨,张佳丽,朱琳,苏齐针,杨颖,边媛. 生态保护红线划定下的极小种群野生植物保护研究. 中国野生植物资源. 2024(12): 107-116+123 .
    2. 孙中元,孙传涛,孙超,吕少杰,赵怡康. 烟台沿海防护林体系盐桦两年生苗造林试验初探. 山东林业科技. 2023(02): 50-54 .
    3. 欧阳子龙,张磊,苏大宏,蒙奕奕,唐健民,贾湘璐,余惠英,龚理. 珍稀濒危植物迁地保护与园林应用——以南宁植物园为例. 广西科学院学报. 2023(04): 412-425 .
    4. 安红婧,王发春,周毛措,周碧瑶,胡樱,贾慧萍,王慧春. 极小种群植物研究进展. 安徽农学通报. 2022(06): 38-40 .
    5. 王爽,吕霞. 外源ABA对干旱胁迫及复水下弥勒苣苔生长的影响. 黑龙江农业科学. 2022(06): 67-71 .
    6. 许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展. 生物多样性. 2022(10): 84-105 .
    7. 黄继红,臧润国. 中国植物多样性保护现状与展望. 陆地生态系统与保护学报. 2021(01): 66-74 .

    Other cited types(5)

Catalog

    Article views (860) PDF downloads (987) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return