Advance Search
Wu Ya, Chen Si, Zhang Wei-Hong, Liu Da-Lin, Fan Ji-Biao, Xu Zhi-Peng, Shen Yu. Growth and physiological responses of Lolium multiflorum to aluminum stress[J]. Plant Science Journal, 2018, 36(5): 755-760. DOI: 10.11913/PSJ.2095-0837.2018.50755
Citation: Wu Ya, Chen Si, Zhang Wei-Hong, Liu Da-Lin, Fan Ji-Biao, Xu Zhi-Peng, Shen Yu. Growth and physiological responses of Lolium multiflorum to aluminum stress[J]. Plant Science Journal, 2018, 36(5): 755-760. DOI: 10.11913/PSJ.2095-0837.2018.50755

Growth and physiological responses of Lolium multiflorum to aluminum stress

Funds: 

This work was supported by grants from the Construction of Modern Agricultural (dairy) Industry Technology System (CARS-36) and Construction of Modern Agricultural Technology System in Jiangsu[JATS(2018)314].

More Information
  • Received Date: March 29, 2018
  • Available Online: October 31, 2022
  • Published Date: October 27, 2018
  • We used a pot experiment to determine physiological and growth indicators of Lolium multiflorum Lam. under Al3+ stress (0, 100, 200, 300, 400, 500 mg/kg). Results showed that aluminum stress inhibited the growth and biomass accumulation of ryegrass, with higher Al3+ content resulting in stronger inhibition. When Al3+ content in the soil was 500 mg/kg, plant height and shoot dry weight were significantly inhibited; however, when Al3+ content was 100 mg/kg, root length and root dry weight were significantly inhibited. Furthermore, chlorophyll-a, chlorophyll-b, and total chlorophyll in the leaves decreased with the increase in Al3+ concentration. When Al3+ content was 500 mg/kg, chlorophyll-a and chlorophyll-b decreased by 56.81% and 46.57%, respectively. However, soluble sugar content, free proline content, MDA content, and SOD activity in the above-ground shoot and below-ground root systems increased with the increase in Al3+ concentration; however, these four indicators were higher in the shoot than root system.
  • [1]
    Chen J, Wang WH, Wu FH, You CY, Liu TW, et al. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings[J]. Plant Soil, 2013, 362(1-2):301-318.
    [2]
    刘鹏, 徐根娣, 郭水良, 汪敏. 南方4种草本植物对铝胁迫生理响应的研究[J].植物生态学报, 2005, 29(4):644-651.

    Liu P, Xu GD, Guo SL, Wang M. Physiological response of four southern herbaceous plants to aluminium stress[J]. Acta Phytoecologica Sinica, 2005, 29(4):644-651.
    [3]
    刘春英, 孙学映, 朱体超, 陈光蓉, 郑章云. 不同黑麦草品种生产性能比较与优势品种筛选[J]. 草业学报, 2014, 23(4):39-48.

    Liu CY, Sun XY, Zhu TC, Chen GR, Zheng ZY. Comparison of the production performance of ryegrass cultivars and screening of dominant varieties[J]. Acta Prataculturae Sinica, 2014, 23(4):39-48.
    [4]
    Panda SK, Baluška F, Matsumoto H. Aluminum stress signaling in plants[J]. Plant Signal Behav, 2009, 4(7):592-597.
    [5]
    Kennedy IR. Acid Soil and Acid Rain:the Impact on the Environment of Nitrogen and Sulphur Cycling[M]. Letchworth:Research Studies Press, 1986.
    [6]
    刘影. 扁穗牛鞭草和多花黑麦草对铝胁迫的生理响应[D]. 成都:四川农业大学, 2011.
    [7]
    陈志刚, 张红蕊, 周晓红, 张珂. 铝胁迫对黑麦草根系抗氧化酶活性和丙二醛含量的诱导特征研究[J]. 土壤通报, 2012, 43(2):391-395.

    Chen ZG, Zhang HR, Zhou XH, Zhang K. Study on characteristics of antioxidant enzymes activities and MDA contents in Lolium multiflorum roots induced by aluminum stress[J]. Chinese Journal of Soil Science, 2012, 43(2):391-395.
    [8]
    廖敏,黄昌勇. 黑麦草生长过程中有机酸对镉毒性的影响[J]. 应用生态学报, 2002, 13(1):109-112.

    Liao M, Huang CY. Effects of organic acids on the toxicity of cadmium during ryegrass growth[J]. Chinese Journal of Applied Ecology, 2002, 13(1):109-112.
    [9]
    徐卫红, 熊治庭, 王宏信, 李仰锐, 刘吉振, 李文一. 锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J]. 水土保持学报, 2005, 19(4):32-35.

    Xu WH, Xiong ZT, Wang HX, Li YR, Liu JZ, Li WY. Effects of Zn stress on nutrient uptake and Zn accumulation in four varieties of ryegrass[J]. Journal of Soil and Water Conservation, 2005, 19(4):32-35.
    [10]
    刘新. 植物生理学实验指导[M]. 北京:中国农业出版社, 2015.
    [11]
    张立军, 樊金娟. 植物生理学实验教程[M]. 北京:中国农业大学出版社, 2007.
    [12]
    张卫红, 刘大林, 苗彦军, 徐雅梅, 陈鸣晖, 邵将. 野生赖草和垂穗披碱草抗旱能力比较[J]. 草业科学, 2017, 34(6):1255-1263.

    Zhang WH, Liu DL, Miao YJ, Xu YM, Chen MH, Shao J. Comparison of drought resistance of wild Leymus secalinus and Elymus nutans in Tibet[J]. Pratacultural Science, 2017, 34(6):1255-1263.
    [13]
    时振振, 李胜, 杨柯, 马绍英, 刘会杰, 等. 盐胁迫下豌豆幼苗对内外源NO的生理生化响应[J]. 草业学报, 2014, 23(5):193-200.

    Shi ZZ, Li S, Yang K, Ma SY, Liu HJ, et al. Physiological and biochemical response of pea seedlings to endogenous and exogenous NO under salt stress[J]. Acta Prataculturae Sinica, 2014, 23(5):193-200.
    [14]
    张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9):1916-1926.

    Zhang MR, Yang YM, Cheng YX, Zhou T, Duan XY, et al. Generation of reactive oxygen species and their functions and deleterious effects in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9):1916-1926.
    [15]
    张卫红, 刘大林, 苗彦军, 闫天芳, 蔺永和, 徐雅梅. 西藏3种野生牧草苗期对干旱胁迫的响应[J]. 生态学报, 2017, 37(21):7277-7285.

    Zhang WH, Liu DL, Miao YJ, Yan TF, Lin YH, Xu YM. Drought stress responses of the seedlings of three wild forages in Tibet[J]. Acta Ecologica Sinica, 2017, 37(21):7277-7285.
    [16]
    杨丹娜, 骆夜烽, 谢家琪, 张钦, 杨烈. 酸、铝胁迫对苜蓿种子发芽和幼苗生长的影响[J]. 草业学报, 2015, 24(8):103-109.

    Yang DN, Luo YF, Xie JQ, Zhang Q, Yang L. Effects of acidity and/or aluminum stress on seed germination and seedling growth of alfalfa[J]. Acta Prataculturae Sinica, 2015, 24(8):103-109.
    [17]
    康乐. 油茶幼苗根系生长特性研究[D]. 重庆:西南大学, 2012.
    [18]
    徐雅梅, 张卫红, 蔺永和, 刘大林, 苗彦军. 锰对西藏不同地域野生赖草萌发的影响及评价[J]. 环境科学与技术, 2017, 40(5):73-79.

    Xu YM, Zhang WH, Lin YH, Liu DL, Miao YJ. Effects and evaluations on germination period of wild Leymus secalinus in different regions of Tibet[J]. Environmental Science and Technology, 2017, 40(5):73-79.
    [19]
    杨野, 王伟, 刘辉, 叶志娟, 赵竹青, 耿明建. 铝胁迫对不同耐铝小麦品种根伸长生长影响的研究[J]. 植物营养与肥料学报, 2010, 16(3):584-590.

    Yang Y, Wang W, Liu H, Ye ZJ, Zhao ZQ, Geng MJ. Effects of aluminum stress on root elongation of different aluminum tolerance wheat cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3):584-590.
    [20]
    王水良, 王平, 王趁义. 铝胁迫对马尾松幼苗根系形态及活力的影响[J]. 生态学杂志, 2010, 29(11):2097-2101.

    Wang SL, Wang P, Wang CY. Effects of aluminum stress on Pinus massoniana seedlings root morphology and activity[J]. Chinese Journal of Ecology, 2010, 29(11):2097-2101.
    [21]
    曹林, 吴玉环, 章艺, 郭怡, 肖有铁, 等. 外源水杨酸对铝胁迫下菊芋光合特性及耐铝性的影响[J]. 水土保持学报, 2015, 29(4):260-266.

    Cao L, Wu YH, Zhang Y, Guo Y, Xiao YT, et al. Effect of exogenous salicylic acid on photosynthetic characteristics and aluminum tolerance of helia[J]. Journal of Soil and Water Conservation, 2015, 29(4):260-266.
    [22]
    赵会娥, 贺立源, 章爱群, 门玉英. 铝胁迫对植物光合作用的影响及其机理的研究进展[J]. 华中农业大学学报, 2008, 27(1):155-160.

    Zhao HE, He LY, Zhang AQ, Men YY. Advance in the study of effects of aluminum stress on plant photosynthesis and its mechanism[J]. Journal of Huazhong Agricultural University, 2008, 27(1):155-160.
    [23]
    李刚, 徐芳杰, 张奇春, 章永松, 林咸永. 铝胁迫对不同耐铝性小麦基因型根尖抗氧化酶活性的影响[J]. 浙江大学学报:农业与生命科学版, 2009, 35(6):619-625.

    Li G, Xu FJ, Zhang QC, Zhang YS, Lin XY. Effects of aluminum stress on antioxidant enzyme activity in root tips of wheat genotypes differing in aluminum tolerance[J]. Journal of Zhejiang University:Agriculture and Life Sciences Edition, 2009, 35(6):619-625.
    [24]
    Ma JF, Zheng SJ, Matsumoto H. Detoxifing aluminium with buckwheat[J]. Nature, 1997, 390(11):569-570.
    [25]
    Ma J. Role of organic acid in detoxification of aluminum in higher plants[J]. Plant Cell Physiol, 2000, 41(4):383-390.
  • Related Articles

    [1]Zhao Yingmei, Lu Siyu, Xie Qianghua, Huang Dongliu, Wan Chunyan, Yang Quanguang, Meng Yiyi, Wu Hongjia, Zhu Shidan. Study on the differences in leaf traits between tropical-subtropical cycad gymnosperms and woody angiosperms[J]. Plant Science Journal, 2025, 43(1): 11-20. DOI: 10.11913/PSJ.2095-0837.24072
    [2]Wang Qin, Yang Da, Peng Xiaorong, Ke Yan, Zhang Yunbing, Zhang Jiaolin. Studies on leaf functional traits in key protected plants of Myristicaceae[J]. Plant Science Journal, 2024, 42(4): 519-532. DOI: 10.11913/PSJ.2095-0837.23289
    [3]Wang Qiuxue, Peng Shuting, Gan Wanyi, Peng Zhengdong, Xu Qi, Huang Liujing. Responses of leaf and fine root functional traits to water-salt gradients in the Fuzhou section of the Minjiang River Basin[J]. Plant Science Journal, 2024, 42(4): 454-465. DOI: 10.11913/PSJ.2095-0837.23270
    [4]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [5]Zhang Ai-Ying, Fan Da-Yong, Ma Liang, Yang Dan, Xiong Gao-Ming, Xie Zong-Qiang. Intra-annual variations in leaf traits of Cynodon dactylon (L.) Pers. during exposure period in riparian zone of Three Gorges Reservoir Area[J]. Plant Science Journal, 2022, 40(4): 453-461. DOI: 10.11913/PSJ.2095-0837.2022.40453
    [6]Li Ling-Li, Xu Yao-Zhan, Zhou Tian-Yang, Yang Zhu-Zhu, Huang Han-Dong, Gu Zhi-Rong, Jiang Ming-Xi. Population structure and community characteristics of Pseudotsuga sinensis Dode in Badagongshan, Hunan Province, China[J]. Plant Science Journal, 2021, 39(2): 111-120. DOI: 10.11913/PSJ.2095-0837.2021.20111
    [7]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [8]Xu Wen-Xiu, Lu Jun-Meng, Lu Zhi-Jun, Liu Meng-Ting, Liu Jian-Ming, Jiang Ming-Xi. Analysis of main factors affecting seedling survival in Badagongshan evergreen and deciduous broad-leaved mixed forest[J]. Plant Science Journal, 2017, 35(5): 659-666. DOI: 10.11913/PSJ.2095-0837.2017.50659
    [9]Liu Yang, Fu Wen-Long, Cao Yu, Li Wei. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 2017, 35(3): 444-451. DOI: 10.11913/PSJ.2095-0837.2017.30444
    [10]LU Zhi-Jun, BAO Da-Chuan, GUO Yi-Li, LU Jun-Meng, WANG Qing-Gang, HE Dong, ZHANG Kui-Han, XU Yao-Zhan, LIU Hai-Bo, MENG Hong-Jie, HUANG Han-Dong, WEI Xin-Zeng, LIAO Jian-Xiong, QIAO Xiu-Juan, JIANG Ming-Xi, GU Zhi-Rong, LIAO Chun-Lin. Community Composition and Structure of Badagongshan (BDGS) Forest Dynamic Plot in a Mid-subtropical Mountain Evergreen and Deciduous Broad-leaved Mixed Forest, Central China[J]. Plant Science Journal, 2013, 31(4): 336-344. DOI: 10.3724/SP.J.1142.2013.40336
  • Cited by

    Periodical cited type(2)

    1. Qichi Yang,Hehe Zhang,Lihui Wang,Feng Ling,Zhengxiang Wang,Tingting Li,Jinliang Huang. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests. Plant Diversity. 2021(04): 264-274 .
    2. 董雪,李永华,辛智鸣,段瑞兵,姚斌,包岩峰,黄雅茹,张正国. 河西走廊西段戈壁灌木群落多样性及其分布格局研究. 干旱区地理. 2020(06): 1514-1522 .

    Other cited types(5)

Catalog

    Article views (643) PDF downloads (732) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return