Advance Search
Qian Qiu-Bo-Yan, Wang Lei, Yang Chun-Xian, Yu Jin-Rui, Xie Xin, Qian Gang, He Li-Fang. Embryological features of early development of zygotic embryo and endosperm in Senecio scandens (Compositae)[J]. Plant Science Journal, 2019, 37(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2019.10079
Citation: Qian Qiu-Bo-Yan, Wang Lei, Yang Chun-Xian, Yu Jin-Rui, Xie Xin, Qian Gang, He Li-Fang. Embryological features of early development of zygotic embryo and endosperm in Senecio scandens (Compositae)[J]. Plant Science Journal, 2019, 37(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2019.10079

Embryological features of early development of zygotic embryo and endosperm in Senecio scandens (Compositae)

Funds: This work was supported by grants from the National Natural Science Foundation of China (31560087), Undergraduate Innovation Fund of Qiannan Medical College for Nationalities (QNYZ201707), Undergraduate Innovation Fund of Zunyi Medical College (201751009), and Guizhou Undergraduate Innovation and Entrepreneurship Training Program (2018520412)
More Information
  • Received Date: August 08, 2018
  • Revised Date: September 04, 2018
  • Published Date: February 27, 2019
  • Senecio scandens Buch. -Ham.ex D.Don (Compositae) plays a crucial antibacterial role in Chinese traditional medicines. Here, we characterized the development of the zygotic embryo and endosperm of this species to obtain basic knowledge regarding its cytological mechanism and practical breeding application. Based on chronological description of the embryogenesis events, the oblique first division in the zygote indicated that the origin of the apico-basal polarity of zygotic embryo development was established by the polar ovule. We deduced, therefore, that cell differentiation was attributable to an unevenly spaced distribution of cytoplasm in the zygotic embryo, where the ovule polarity impinged on the polar orientation of the embryo sac, egg cell, and thereby zygotic embryo. The recognizable developmental structure appeared at the torpedo stage, suggesting that tissue differentiation could be related to the signal substance throughout the outer and inner cells. Moreover, endosperm development followed the nuclear type model, resulting from the initial endosperm nuclei repeatedly dividing without cell wall formation. These representative morphological features of embryo development will be useful for further studies on functional genes, in vitro fertilization, and haploid plant production in this species.
  • [1]
    Carmichael JS,Friedman WE. Double fertilization in gnetum gnemon:the relationship between the cell cycle and sexual reproduction[J]. Plant Cell,1995,7(12):1975-1988.
    [2]
    Friedman WE. Evolving words and the egg-bearing tubes of Welwitschia (Welwitschiaceae)[J]. Am J Bot,2015,102(2):176-179.
    [3]
    González-Gutiérrez AG,Rodríguez-Garay B. Embryoge-nesis in Polianthes tuberosa L. var. simple:from megasporogenesis to early embryo development[J]. Springerplus,2016,5(1):1804.
    [4]
    Dumas C,Rogowsky P. Fertilization and early seed formation[J]. Cr Biol,2008,331(10):715-725.
    [5]
    Qian G,Ping J,Lu J,Zhang Z,Wang L,Xu D. Construction of full-length cDNA library and development of EST-derived simple sequence repeat (EST-SSR) markers in Senecio scandens[J]. Biochem Genet,2014,52(11-12):494-508.
    [6]
    Capron A,Chatfield S,Provart N,Berleth T. Embryogenesis:pattern formation from a single cell[J]. Arabidopsis Book,2009,7:e0126.
    [7]
    Povilus RA,Diggle PK,Friedman WE. Evidence for pa-rent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage[J]. Proc Biol Sci,2018,285:1872.
    [8]
    Friedman WE,Carmichael JS. Heterochrony and developmental innovation:evolution of female gametophyte onto-geny in Gnetum,a highly apomorphic seed plant[J]. Evolution,1998,52(4):1016-1030.
    [9]
    Friedman WE. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae)[J]. Am J Bot,2015,102(2):312-324.
    [10]
    Shapiro E,Baneyx F. Stress-based identification and classification of antibacterial agents:second-generation Esche-richia coli reporter strains and optimization of detection[J]. Antimicrob Agents Ch,2002,46(8):2490-2497.
    [11]
    Yeung EC. Histological and histochemical staining procedures[J]. J Trauma,1984,9(2):154-156.
    [12]
    Palmer RG. Mayer's hemalum-methyl salicylate:a stain-clearing technique for observations within whole ovules[J]. Stain Technol,1984,59(3):155-161.
    [13]
    O'Brien TP,McCully ME. The study of plant structure:principles and selected methods[M]. Melbourne:Termarcarphi Pty. Ltd,1981.
    [14]
    Barrell PJ,Grossniklaus U. Confocal microscopy of whole ovules for analysis of reproductive development:the elongate1 mutant affects meiosisⅡ[J]. Plant J,2005,43(2):309-320.
    [15]
    Dresselhaus T,Sprunck S,Wessel G. Fertilization mechanisms in flowering plants[J]. Curr Biol,2016,26(3):R125-R139.
    [16]
    Faure JE,Dumas C. Fertilization in flowering plants. New approaches for an old story[J]. Plant Physiol,2001,125(1):102-104.
    [17]
    Amien S,Kliwer I,Márton ML,Debener T,Geiger D,et al. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1[J]. PLoS Biol,2010,8(6):e1000388.
    [18]
    Goldberg RB,Paiva GD,Yadegari R. Plant embryogenesis:zygote to seed[J]. Science,1994,266(5185):605-614.
    [19]
    Kaplan DR,Cooke TJ. Fundamental concepts in the embryogenesis of dicotyledons:a morphological interpretation of embryo mutants[J]. Plant Cell,1997,9(11):1903-1919.
    [20]
    Schulz R,Jensen WA. Capsella embryogenesis:the egg,zygote,and young embryo[J]. Am J Bot,1968,55(7):807-819.
    [21]
    Mogensen HL,Suthar HK. Ultrastructure of the egg apparatus of Nicotiana tabacum (Solanaceae) before and after fertilization[J]. Botanical Gazette,1979,140(2):168-179.
    [22]
    Mansfield SG,Briarty LG. Early embryogenesis in Arabidopsis thalianaⅡ. The developing embryo[J].Can J Bot,1991,69(3):447-460.
    [23]
    Rudall PJ. Flower anatomy and systematics of comospermum (Asparagales)[J]. Syst Geogr Plants,1999,68(1/2):195-202.
    [24]
    Boisnard LC,Colon CA,Bauch M,Hodge S,Doerner P,et al. Dynamic analyses of the expression of the HIS-TONE∷YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains[J]. Plant Cell,2001,13:495-509.
    [25]
    Bittencourt Júnior NS. Evidence for post-zygotic self-incompatibility in Handroanthus impetiginosus (Bignonia-ceae)[J]. Plant Reprod,2017,30(2):1-11.
    [26]
    Gurdon JB,Bourillot PY. Morphogen gradient interpretation[J]. Nature,2001,413(6858):797-803.
    [27]
    Schwartz BW,Yeung EC,Meinke DW. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis[J]. Development,1994,120(11):3235-3245.
    [28]
    Chaudhury AM,Berger F. Maternal control of seed deve-lopment[J]. Semin Cell Devbiol,2001,12(5):381-386.
    [29]
    Xia Z,Hirsch CN,Sekhon RS,de Leon N,Kaeppler SM. Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis[J]. J Exp Bot,2016,67(6):1907-1917.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (711) PDF downloads (957) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return