Advance Search
Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087
Citation: Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087

Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis

Funds: This work was supported by a grant from the National Natural Science Foundation of China (31670300)
More Information
  • Received Date: August 27, 2018
  • Revised Date: September 24, 2018
  • Published Date: February 27, 2019
  • As a naturally occurring steroid sapogenin, diosgenin is an important intermediate for the synthesis of hundreds of steroid drugs. However, the biosynthetic pathway to diosgenin has not yet been completely elucidated and it remains unclear whether diosgenin biosynthesis originates from lanosterol or cycloartenol. In this study, the gene encoding cycloartenol synthase (CAS), TfCAS, was successfully cloned from a diosgenin-producing plant Trigonella foenum-graecum L. The open reading frame of the TfCAS gene had 2 271 base pairs of nucleotides encoding 756 amino acids. TfCAS showed 94%, 91%, and 89% of amino acid identities to the CASs from Medicago truncatula Gaertn., Pisum sativum L., and Lotus japonicas L., respectively. Biochemical analysis using a yeast expression system confirmed that TfCAS encodes a functional CAS protein that can convert 2,3-oxidosqualene into cycloartenol. The TfCAS transcript level in Trigonella foenum-graecum was further genetically modified by overexpressing the TfCAS gene via the hairy root transformation system. Real-time PCR analysis showed that the TfCAS transcript level was significantly up-regulated in the TfCAS-expressed hairy roots, suggesting success of the transgene events. Compared with the empty vector-transformed lines, the overexpression of TfCAS led to a slight but non-significant improvement in the biosynthesis of diosgenin and β-sitosterol. These data indicate that TfCASmay not be a rate limiting enzyme but may play a role in the diosgenin synthetic pathway in Trigonella foenum-graecum.
  • [1]
    Rajalingam K,Sugunadevi G,Arokia VM,Kalaimathi J,Suresh K. Anti-tumour and anti-oxidative potential of diosgenin against 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis[J]. Pathol Oncol Res,2012,18(2):405-412.
    [2]
    Tong QY,He Y,Zhao QB,Qing Y,Huang W,Wu XH. Cytotoxicity and apoptosis-inducing effect of steroidal saponins from Dioscorea zingiberensis Wright against cancer cells[J]. Steroids,2012,77(12):1219-1227.
    [3]
    Man SL,Gao WY,Zhang YJ,Huang LQ,Liu CX. Chemical study and medical application of saponins as anti-cancer agents[J]. Fitoterapia,2010,81(7):703-714.
    [4]
    Sautour M,Mitaine-Offer AC,Miyamoto T,Dongmo A,Lacaille-Dubois MA. Antifungal steroid saponins from Dioscorea cayenensis[J]. Planta Med,2004,70(1):90-92.
    [5]
    于海荣,王济兴,陈建双,周小春,宋鸿儒. 穿山龙总皂苷含药血清对小鼠脾淋巴细胞增殖及IL-6产生影响的实验研究[J]. 江苏中医药,2007,39(1):57-58.
    [6]
    Wang YJ,Pan KL,Hsieh TC,Chang TY,Lin WH,Hsu JTA. Diosgenin,a plant-derived sapogenin,exhibits antiviral activity in vitro against Hepatitis C virus[J]. J Nat Prod,2011,74(4):580-584.
    [7]
    Dong J,Lei C,Lu D,Wang Y. Direct biotransformation of dioscin into diosgenin in rhizome of Dioscorea zingiberensis by Penicillium dioscin[J]. Indian J Microbiol,2015,55(2):200-206.
    [8]
    Bennett RD,Heftmann E. Biosynthesis of Dioscorea sapogenins from cholesterol[J]. Phytochemistry,1965,4(4):577-586.
    [9]
    Stohs SJ,Kaul B,Staba EJ. The metabolism of 14C-cholesterol by Dioscorea deltoidea suspension cultures[J]. Phytochemistry,1969,8(9):1679-1686.
    [10]
    Joly RA,Bonner J,Bennett RD,Heftmann E. The biosynthesis of steroidal sapogenins in Dioscorea floribunda from doubly labelled cholesterol[J]. Phytochemistry,1969,8(9):1709-1711.
    [11]
    Stohs SJ,Sabatka JJ,Rosenberg H,Stohs SJ,Sabatka JJ,Rosenberg H. Incorporation of 4-14C-22,23-3 H-sito-sterol into diosgenin by Dioscorea deltoidea tissue suspension cultures[J]. Phytochemistry,1974,13(10):2145-2148.
    [12]
    Caspi E,Sliwowski J. Letter:on the role of cycloartenol in the formation of phytosterols. Biosynthesis of (19-2H) sitosterol in deuterium oxide germinated peas[J]. J Am Chem Soc,1975,97(17):5032-5034.
    [13]
    Sonawane PD,Pollier J,Panda S,Szymanski J,Massalha H,et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism[J]. Nat Plants,2016,3(1):16205.
    [14]
    Morita M,Shibuya M,Lee MS,Sankawa U,Ebizuka Y. Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast[J]. Biol Pharm Bull,1997,20(7):770-775.
    [15]
    Zhang H,Shibuya M,Yokota S,Ebizuka Y. Oxidosqua-lene cyclases from cell suspension cultures of Betula platyphylla var.japonica:molecular evolution of oxidosqua-lene cyclases in higher plants[J]. Biol Pharm Bull,2003,26(5):642-650.
    [16]
    陈迪,陈永勤,杨之帆,张艳艳,肖柳青. 盾叶薯蓣环阿屯醇合酶基因克隆与表达[J]. 西北植物学报,2009,29(2):221-228. Chen D,Chen YQ,Yang ZF,Zhang YY,Xiao LQ. Molecular cloning and expression of cycloartenol synthase gene from Dioscorea zingiberensis[J]. Acta Botanica Boreali-Occidentalia Sinica,2009,29(2):221-228.
    [17]
    Gaspascual E,Simonovik B,Schaller H,Bach TJ. Inhibition of cycloartenol synthase (CAS) function in tobacco BY-2 Cells[J]. Lipids,2015,50(8):773-784.
    [18]
    Mishra S,Bansal S,Mishra B,Sangwan RS,Asha,et al. RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera[J]. PLoS One,2016,11(2):e0149691.
    [19]
    中国科学院中国植物志编辑委员会. 中国植物志:第42卷,第2分册[M]. 北京:科学出版社,1990.
    [20]
    李晓华,李长福,黎佳,刘梦迪,章焰生. 两种影响因子对葫芦巴发根转化率的影响[J]. 植物科学学报,2017,35(5):735-740. Li XH,Li CF,Li J,Liu MD,Zhang YS. Effect of two key treatments on the transformation efficiency of fenugreek hairy roots[J]. Plant Science Journal,2017,35(5):735-740.
    [21]
    Murashige T,Skoog F. A revised medium for rapid growth and bioassays with tabacco tissue cultures[J]. Physiol Plantarum,2010,15(3):473-497.
    [22]
    汪波. 丹参酚酸和薯蓣皂苷生物合成基因的挖掘与分析[D]. 北京:北京协和医学院,2015.
    [23]
    黄亚辉,盛孝邦. 薯蓣皂甙元的研究进展[J]. 中国野生植物资源,2005,24(5):20-23. Huang YH,Sheng XB. Advances in research of diosgenin[J]. Chinese Wild Plant Resources,2005,24(5):20-23.
    [24]
    Li J,Liang Q,Li CF,Liu MD,Zhang YS. Comparative transcriptome analysis identifies putative genes involved in dioscin biosynthesis in Dioscorea zingiberensis[J]. Molecules,2018,23(2):454.
    [25]
    Sun W,Wang B,Yang J,Wang W,Liu A,et al. Weighted gene co-expression network analysis of the dioscin rich medicinal plant Dioscorea nipponica[J]. Front Plant Sci,2017,8:789.
    [26]
    Diarra ST,He J,Wang J,Li J. Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensisvia up-regulation of CAS and HMGR gene expression[J]. Electron J Biotechn,2013,16(5):6-16.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (512) PDF downloads (696) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return