Advance Search
Yang Fu-Rong, Zhang Qin, Sun Cheng-Zhong, Xie Cai-Xiang, Song Jing-Yuan. Comparative evaluation of multiple models for predicting the potential distribution areas of Astragalus membranaceus var. mongholicus[J]. Plant Science Journal, 2019, 37(2): 136-143. DOI: 10.11913/PSJ.2095-0837.2019.20136
Citation: Yang Fu-Rong, Zhang Qin, Sun Cheng-Zhong, Xie Cai-Xiang, Song Jing-Yuan. Comparative evaluation of multiple models for predicting the potential distribution areas of Astragalus membranaceus var. mongholicus[J]. Plant Science Journal, 2019, 37(2): 136-143. DOI: 10.11913/PSJ.2095-0837.2019.20136

Comparative evaluation of multiple models for predicting the potential distribution areas of Astragalus membranaceus var. mongholicus

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (81473304) and National Science-Technology Support Plan (2015BAI05B01).

More Information
  • Received Date: September 09, 2018
  • Revised Date: November 04, 2018
  • Available Online: October 31, 2022
  • Published Date: April 27, 2019
  • Based on 123 distribution points of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao and 19 ecological variables, four ecological niche models (i.e., BIOCLIM, DOMAIN, GARP, and MAXENT) were used to predict the potential distribution areas of Astragalus membranaceus, with the different models then judged and compared using areas under the receiver operating characteristic curves (AUC) and Kappa values. Results showed that the four models had good prediction accuracy and consistency, with AUC values above 0.8 and Kappa values above 0.6. The DOMAIN model demonstrated the highest AUC and Kappa values, indicating that the prediction accuracy and results of this model were optimal and stable. The predicted suitable area range of the GARP model was the widest, with the MAXENT and BIOCLIM models showing similar prediction ranges and DOMAIN demonstrating relatively dispersed prediction regions. The four models showed that the northwest regions could be used as major production areas for A. membranaceus var. mongholicus cultivation. The prediction results indicated that the potential distribution areas for A. membranaceus var. mongholicus were mainly located in north of 33°N, and included Mongolia, Shaanxi, Shanxi, Gansu, Ningxia, Hebei, and the border area of northeastern provinces and Inner Mongolia. In addition, small potentially suitable areas were also located in Xinjiang, Tibet, Qinghai, and Sichuan. However, the most suitable areas were distributed in Gansu, Ningxia, Shaanxi, Shanxi, Hebei and Inner Mongolia Autonomous Region.
  • [1]
    国家药典委员会. 中华人民共和国药典:一部[S]. 北京:中国医药科技出版社, 2015.
    [2]
    冯学金, 刘根科, 梁素明. 蒙古黄芪种质资源研究进展[J]. 山西农业科学, 2010, 38(8):95-98.

    Feng XJ, Liu GK, Liang SM. Review of studies on germplasm resources of Mongolia milkvetch[J].Journal of Shanxi Agricultural Sciences, 2010, 38(8):95-98.
    [3]
    张兰涛, 郭宝林, 朱顺昌, 冯国志. 黄芪种质资源调查报告[J]. 中药材, 2006, 29(8):771.

    Zhang LT, Guo BL, Zhu SC, Feng GZ. Investigation report on Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao[J].Journal of Chinese Medicinal Materials, 2006, 29(8):771.
    [4]
    秦雪梅, 李震宇, 孙海峰, 张丽增, 周然, 等. 我国黄芪药材资源现状与分析[J]. 中国中药杂志, 2013, 38(19):3234-3238.

    Qin XM, Li ZY, Sun HF, Zhang LZ, Zhou R, et al. Status and analysis of Astragali Radix resource in China[J]. China Journal of Chinese Materia Medica, 2013, 38(19):3234-3238.
    [5]
    谢彩香, 宋经元, 韩建萍, 黄林芳, 李西文. 中药材道地性评价与区划研究[J]. 世界科学技术-中医药现代化, 2016, 18(6):950-958.

    Xie CX, Song JY, Han JP, Huang LF, Li XW. Research on genuineness evaluation and regionalization of Chinese medicinal materials[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2016, 18(6):950-958.
    [6]
    Kulhanek SA, Leung B, Ricciardi A. Using ecological niche models to predict the abundance and impact of invasive species:Application to the common carp[J]. Ecol Appl, 2011, 21(1):203-213.
    [7]
    张琴, 曾凡琳, 张东方, 谢彩香, 陈士林. 基于最大熵模型的三七生态适宜区及生态特征[J]. 药学学报, 2016, 51(10):1629-1637.

    Zhang Q, Zeng FL, Zhang DF, Xie CX, Chen SL. Ecology suitability regions and ecological characteristics of Panax notoginseng (Burk.) F. H. Chen based on maximum entropy model[J].Acta Pharmaceutica Sinica, 2016, 51(10):1629-1637.
    [8]
    文检, 宋经元, 谢彩香, 张琴, 曾凡琳, 张艺. 基于最大信息熵模型的能源物种麻疯树潜在适宜区[J]. 植物科学学报, 2016, 34(6):849-856.

    Wen J, Song JY, Xie CX, Zhang Q, Zen FL, Zhang Y. Identification of potential distribution areas for energy plant Jatropha curcas L. using the Maxent Entropy Model[J].Plant Science Journal, 2016, 34(6):849-856.
    [9]
    Busby JR. BIOCLIM-a bioclimate analysis and prediction system[J]. Plant Protection Quarterly, 1991, 6(1):8-9.
    [10]
    Carpenter G, Gillison AN, Winter J. DOMAIN:A flexible modelling procedure for mapping potential distributions of plants and animals[J]. Biodivers Conserv, 1993, 2(6):667-680.
    [11]
    Stovkwell D, Peters D. The GARP modeling system:problems and solutions to automated spatial prediction[J]. Int J Geogr Inf Sci, 1999, 13(2):143-158.
    [12]
    Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190:231-259.
    [13]
    刘增辉, 曹晓虹. 栽培黄芪的研究综述[J]. 甘肃农业科技, 2014(6):54-56.

    Liu ZH, Cao XH. Review on cultivation of Radix Astragali[J].Gansu Agricultural Science and Technology, 2014(6):54-56.
    [14]
    孙政华, 邵晶, 郭玫. 黄芪化学成分及药理作用研究进展[J]. 中医临床研究, 2015, 7(25):22-25.

    Sun ZH, Shao J, Guo M. A review on chemical components and pharmacological effects of Huangqi[J].Clinical Journal of Chinese Medicine, 2015, 7(25):22-25.
    [15]
    朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Bu WJ, Gao YB. Ecological niche modeling and its applications in biodiversity conservation[J].Biodiversity Science, 2013, 21(1):90-98.
    [16]
    张海涛, 罗渡, 牟希东, 徐猛, 韦慧, 等. 应用多个生态位模型预测福寿螺在中国的潜在适生区[J]. 应用生态学报, 2016, 27(4):1277-1284.

    Zhang HT, Luo D, Mou XD, Xu M, Wei H, et al. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models[J].Chinese Journal of Applied Ecology, 2016, 27(4):1277-1284.
    [17]
    Graham MH. Confronting multicollinearity in ecological multiple regression[J].Ecology, 2003, 84(11):2809-2815.
    [18]
    Zhang MG, Slik JWF, Ma KP. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Sci Rep-UK, 2016, 3:1-9.
    [19]
    Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiov Th, 2004, 3(2):319-322.
    [20]
    Manel S, Williams HC, Ormerod SJ. Evaluating presen-ceabsence models in ecology:the need to account for prevalence[J]. J Appl Ecol, 2001, 38(5):921-931.
    [21]
    Segurado P, Araujo MB. An evaluation of methods for modelling species' distributions[J]. J Biogeogr, 2004, 31(10):1555-1568.
    [22]
    陈亚. 何首乌质量评价及产地适宜区划研究[D]. 广州:广州中医药大学, 2013.
    [23]
    王运生. 生态位模型在外来入侵物种风险评估中的应用研究[D]. 长沙:湖南农业大学, 2007.
    [24]
    索风梅, 丁万隆, 谢彩香, 董粱, 林余霖, 等. 蒙古黄芪的生态适宜性数值分析[J]. 世界科学技术-中医药现代化, 2010, 12(3):480-485.

    Suo FM, Ding WL, Xie CX, Dong L, Lin YL, et al. GIS-Based ecological evaluation of suitable areas of Astragalus membranaceus Growth[J].World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica, 2010, 12(3):480-485.
    [25]
    刘德旺, 谷彩梅, 杨庆珍, 黄林芳, 谢彩香. 内蒙古地区道地药材蒙古黄芪资源调查及产地适宜性[J]. 应用生态学报, 2016, 27(3):838-844.

    Liu DW, Gu CM, Yang QZ, Huang LF, Xie CX. Resource surveys and suitability of origin for genuine medicinal materials, Astragalus membranaceus var. mongholicus in Inner Mongolia, China[J].Chinese Journal of Applied Ecology, 2016, 27(3):838-844.
    [26]
    马松梅, 张明理, 张宏祥, 孟宏虎, 陈曦. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11):1327-1335.

    Ma SM, Zhang ML, Zhang HX, Meng HH, Chen X. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using Maximum Entropy and Genetic Algorithm for Rule-set Prediction[J].Chinese Journal of Plant Ecology, 2010, 34(11):1327-1335.
    [27]
    王娟, 倪健. 中国北方温带地区5种锦鸡儿植物的分布模拟[J]. 植物生态学报, 2009, 33(1):12-24.

    Wang J, Ni J. Modelling The distribution of five Caragana species in temperate northern China[J].Chinese Journal of Plant Ecology, 2009, 33(1):12-24.
    [28]
    张雷, 刘世荣, 孙鹏森, 王同立. 气候变化对马尾松潜在分布影响预估的多模型比较[J]. 植物生态学报, 2011, 35(11):1091-1105.

    Zhang L, Liu SR, Sun PS, Wang TL. Comparative evaluation of multiple models of the effects of climate change on the potential distribution of Pinus massoniana[J].Chinese Journal of Plant Ecology, 2011, 35(11):1091-1105.
    [29]
    王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.

    Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J].Biodiversity Science, 2007, 15(4):365-372.
    [30]
    赵月春. 黄芪的规范化栽培技术[J]. 山西科技, 2015, 30(3):155-157.

    Zhao YC. Standardized cultivation techniques of Astragalus membranaceus[J].Shanxi Science and Technology, 2015, 30(3):155-157.
    [31]
    黄建军. 秦岭构造带对陕西气候和生态环境的控制作用[J]. 地球科学与环境学报, 2015,37(3):81-86.

    Huang JJ. Control of Qinling tectonic zone on climate and eco-environment in Shaanxi[J].Journal of Earth Sciences and Environment, 2015, 37(3):81-86.
    [32]
    张建香, 张多勇, 张勃, 赵一飞, 刘万锋. 黄土高原植被景观多尺度变化及其与地形的响应关系[J]. 生态学杂志, 2015, 34(3):611-620.

    Zhang JX, Zhang DY, Zhang B, Zhao YF, Liu WF. Vegetation landscape change and its multi-scale response relationship with terrain in loess plateau[J].Chinese Journal of Ecology, 2015, 34(3):611-620.
    [33]
    杨宏昕, 张春霞, 魏慧, 王建华. 黄芪栽培研究进展[J]. 临床合理用药, 2015, 8(1):180-181.

    Yang HX, Zhang CX, Wei H, Wang JH. Progress in Astragalus cultivation[J].Chinese Journal of Clinical Rational Drug Use, 2015, 8(1):180-181.
    [34]
    侯颖. 种植黄芪的关键技术[J]. 特种经济动植物, 2012,15(11):39. Hou Y. Key techniques for growing Astragalus membranaceus(Fisch.) Bunge[J].Special Economic Animal and Plant, 2012, 15(11):39.
    [35]
    周广胜, 王玉辉. 全球生态学[M]. 北京:气象出版社, 2003.
  • Related Articles

    [1]Zeng Weiying, Wang Dezhi, Ye Chen, Gong Yu, Wang Yuxi, Zhang Quanfa. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling[J]. Plant Science Journal, 2025, 43(1): 52-62. DOI: 10.11913/PSJ.2095-0837.24033
    [2]GAO Yu, LI Jia-ying, LIU Yu-zhe, MENG Fan-yun. Potential geographical distribution of Salvia miltiorrhiza Bunge based on ensemble model[J]. Plant Science Journal, 2021, 39(6): 571-579. DOI: 10.11913/PSJ.2095-0837.2021.60571
    [3]Li Dan-Qi, Hu Wan, Han Cai-Xia, Chen Lu-Dan, Zhang Zhi-Yong, Zhong Ai-Wen, Wei Zong-Xian, Peng Yan-Song. Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model[J]. Plant Science Journal, 2020, 38(6): 743-750. DOI: 10.11913/PSJ.2095-0837.2020.60743
    [4]Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
    [5]Zhu Meng-Jie, Miao Jia, Zhao Xue-Li. Simulation of potential distribution of Uraria in China based on maximum entropy model[J]. Plant Science Journal, 2020, 38(4): 476-482. DOI: 10.11913/PSJ.2095-0837.2020.40476
    [6]Chen Lu-Dan, Hu Wan, Li Dan-Qi, Cheng Dong-Mei, Zhong Ai-Wen. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China[J]. Plant Science Journal, 2019, 37(6): 731-740. DOI: 10.11913/PSJ.2095-0837.2019.60731
    [7]Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337
    [8]Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang Zhong-Xin. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
    [9]Duan Hou-Lang, Zhao An, Yao Zhong. Modeling plant species-abundance distribution patterns with elevation in typical marshland communities of the Poyang Lake region[J]. Plant Science Journal, 2017, 35(3): 335-343. DOI: 10.11913/PSJ.2095-0837.2017.30335
    [10]WEN Jian, SONG Jing-Yuan, XIE Cai-Xiang, ZHANG Qin, ZENG Fan-Lin, ZHANG Yi. Identification of Potential Distribution Areas for Energy Plant Jatropha curcas L. Using the Maxent Entropy Model[J]. Plant Science Journal, 2016, 34(6): 849-856. DOI: 10.11913/PSJ.2095-0837.2016.60849
  • Cited by

    Periodical cited type(11)

    1. 邵鹏阳,沙玉柱,刘秀,陈国顺,朱才业,王继卿,王翻兄,陈小伟,杨文鑫. 黄芪饲料添加剂对羔羊生长性能、血清Ig和瘤胃发酵功能及微生物菌群特征的影响. 中国农业科技导报(中英文). 2025(03): 83-94 .
    2. 孟乡,李耿,刘斌,史楠楠. 基于Biomod2平台组合模型的蒙古黄芪生产区划研究. 中国现代中药. 2024(11): 1843-1847 .
    3. 张华纬,李志鹏. 基于随机森林模型和GIS的假臭草全国适生区预测. 亚热带植物科学. 2023(01): 50-59 .
    4. 张世林,高润红,高明龙,韩淑敏,张文英,赵静. 气候变化背景下中国樟子松潜在分布预测. 浙江农林大学学报. 2023(03): 560-568 .
    5. 付殿霞,张亮,李小刚,杨霁琴. 基于MaxEnt模型的甘肃连城国家级自然保护区二叶兜被兰潜在适宜生境评价. 中国野生植物资源. 2023(06): 93-99 .
    6. 付晓,陈垣,郭凤霞,董鹏斌,李红玲,郭昱君,许宏亮. 蒙古黄芪3个品系(种)农艺性状及产量比较分析. 中国野生植物资源. 2023(07): 1-7+31 .
    7. 奥运,李晓杰,郝宁,吕艳敏,王俊杰. 刈割时期对蒙古黄芪地上部和根部产量及品质的影响. 草地学报. 2023(10): 3220-3226 .
    8. 唐兴港,袁颖丹,张星,张金池. 板栗树种在中国水土流失区的分布及其环境因子. 水土保持通报. 2021(02): 345-352 .
    9. 杜志喧,苏启陶,周兵,闫小红,李晓红,肖宜安. 不同气候变化情景下入侵植物大狼把草在中国的潜在分布. 生态学杂志. 2021(08): 2575-2582 .
    10. 王爱君,路东晔,张国盛,黄海广,王颖,呼斯楞,敖民. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布. 林业科学. 2021(08): 43-55 .
    11. 唐兴港,袁颖丹,张金池. 气候变化对油松潜在地理分布时空格局的影响. 东北林业大学学报. 2021(09): 1-7 .

    Other cited types(11)

Catalog

    Article views (833) PDF downloads (1034) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return