Advance Search
Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260
Citation: Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260

Chromosome data mining and its application in plant diversity research

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31670206) and Strategic Priority Research Program of Chinese Academy of Sciences (XDA 20050203).

More Information
  • Received Date: November 23, 2018
  • Revised Date: February 20, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2019
  • Polyploidy(or whole-genome doubling) is an important pathway for plant speciation, with existing angiosperms possibly occurring once or even multiple times. The traditional definition of polyploidization is that the number of chromosomes doubles relative to the ancestral group. The most commonly used research method for understanding polyploidy is karyotype analysis, which provides basic cytological parameters of the studied species, including chromosome number, ploidy level, karyotypic asymmetry, and karyotype coefficient of variation. At present, karyotype research has evolved from basic parameter analysis of species to multi-group/multi-disciplinary study, with an associated shift from lower taxonomic level (e.g., population, species, or family/genus) to higher taxonomic level research (e.g., tree of life). In addition, the integration of phylogeny and karyotypes will provide insightful evidence on the potential evolutionary characteristics and tendencies of karyotypes, and the cytological mechanism driving the evolution of plant diversity at the phylogenetic scale. Furthermore, exploring cytological features of the chromosome atlas or polyploidy at the regional or floral scale will help elucidate the influence of geo-ecological environmental shifts on chromosome ploidy. Additionally, constructing a regional chromosome atlas will shed light on the formation and evolutionary history of flora. Plant karyotype research provides new ideas for study on the origin and evolution of systematics, molecular phylogeny, tree of life, and floristic geography. As new methods are used in plant karyotype analysis and polyploidy, results on the effects and mechanisms will reveal the chromosomal evolution and cellular geographic features of plant groups and flora. Future trends in plant cytology research will be multi-disciplinary and integrate evidence from various research fields and will clarify the causes and significance of plant karyotype diversity at different levels to more fully understand plant species diversity and speciation.
  • [1]
    Rieseberg LH, Willis JH. Plant speciation[J]. Science, 2007, 317(5840):910-914.
    [2]
    Stebbins GL. Chromosomal Evolution in Higher Plants[M]. New York:Addison Wesley, 1971.
    [3]
    洪德元. 植物细胞分类学[M]. 北京:科学出版社, 1990.
    [4]
    Lewis WH. Polyploidy in Angiosperms:Dicotyledons[M]//Lewis WH, ed. Polyploidy. New York:Plenum Press, 1980.
    [5]
    Ramsey J, Schemske DW. Neopolyploidy in flowering plants[J]. Annu Rev Ecol Syst, 2002, 33:589-639.
    [6]
    Ehrendorfer F. Polyploidy and distribution[M]//Lewis WH, ed. Polyploidy. New York:Plenum Press, 1980.
    [7]
    Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since plant speciation[J]. New Phytol, 2004, 161(1):173-191.
    [8]
    Arrigo N, Barker MS. Rarely successful polyploids and their legacy in plant genomes[J]. Curr Opin Plant Biol, 2012, 15(2):140-146.
    [9]
    Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, et al. Recently formed polyploid plants diversify at lower rates[J]. Science, 2011, 333(6047):1257-1257.
    [10]
    Wolfe KH. Yesterday's polyploids and the mystery of diploidization[J]. Nature Rev Genet, 2001, 2(5):333-341.
    [11]
    Bennett MD, Smith JB, Seal AG. The karyotype of the grass Zingeria biebersteiniana (2n=4) by light and electron microscopy[J]. Can J Genet Cytol, 1986, 28(4):554-562.
    [12]
    Violetta K, Pistrick K, Gernand D, Meister A, Ghukasyan A, et al. Characterisation of the low-chromosome number grass Colpodium versicolor (Stev.) Schmalh.(2n=4) by molecular cytogenetics[J]. Caryologia, 2005, 58(3):241-245.
    [13]
    Stedje B. A new low chromosome number for Ornithogalum tenuifolium (Hyacinthaceae)[J]. Plant Syst Evol, 1988, 161(1-2):65-69.
    [14]
    Vanzela AL, Guerra M, Luceno M. Rhynchospora tenuis Link (Cyperaceae):a species with the lowest number of holocentric chromosomes (n=2)[J]. Cytobios, 1996, 88:219-228.
    [15]
    Jackson R. Chromosomal evolution in Haplopappus gracilis:a centric transposition race[J]. Evolution, 1973, 27(2):243-256.
    [16]
    Watanabe K, Short P, Kosuge K, Smith-White S. The cytology of Brachyscome Cass. Asteraceae:Astereae).Ⅱ. Hybridisation between B. goniocarpa (n=4) and B. dichromosomatica (n=2)[J]. Aust J Bot, 1991, 39(5):475-485.
    [17]
    Uhl CH. Chromosomes of Mexican SedumⅡ. Section Pachysedum[J]. Rhodora, 1978, 80(824):491-512.
    [18]
    Khandelwal S. Chromosome evolution in the genus Ophioglossum L.[J]. Bot J Linn Soc, 1990, 102(3):205-217.
    [19]
    Lysák MA, Schubert I. Mechanisms of chromosome rearrangements[M]//Greilhuber J, Dolezel J, Wendel JF, eds. Plant Genome Diversity:Vol. 2. New York:Springer Wien Heidelberg, 2013.
    [20]
    Luo JC, Sun XJ, Cormack BP, Boeke JD. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast[J]. Nature, 2018, 560(7718):392-396.
    [21]
    Shao YY, Lu N, Wu ZF, Cai C, Wang SS, Zhang LL, Zhou F, Xiao SJ, Liu L, Zeng XF. Creating a functional single-chromosome yeast[J]. Nature, 2018,560(7718):331.
    [22]
    Lutz AM. A preliminary note on the chromosomes of Oelignothera lamarckiana and one of its mutants, O. gigas[J]. Science, 1907, 26(657):151-152.
    [23]
    Winkler H. Ueber die experimentelle erzeugung von pflanzen mit abweichender chromosomenzahl[J]. Zeitschrift für Botanik, 1916, 8:417-531.
    [24]
    Winge O. The chromosome:their numbers and general importance[J]. Compt Rend Trav Lab Carlsberg, 1917(13):131.
    [25]
    Darlington CD. Recent Advances in Cytology[M]. Philadelphia:Blakiston's son and Co, 1937.
    [26]
    Grant V. Plant Speciation[M]. 2nd ed. New York:Columbia University Press, 1981.
    [27]
    Kihara H, Ono T. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten[J]. Z Zellforsch Mikrosk Anat, 1926, 4(3):475-481.
    [28]
    Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annu Rev Ecol Syst, 1998, 29(1):467-501.
    [29]
    Soltis DE, Soltis PS, Rieseberg LH. Molecular data and the dynamic nature of polyploidy[J]. Crit Rev Plant Sci, 1993, 12(3):243-273.
    [30]
    Soltis DE, Visger CJ, Soltis PS. The polyploidy revolution then…and now:Stebbins revisited[J]. Am J Bot, 2014, 101(7):1057-1078.
    [31]
    Tate JA, Soltis DE, Soltis PS. Polyploidy in plants[M]//Gregory TR, ed. The Evolution of the Genome. San Diego:Elsevier Science and Technology, Academic Press, 2005, 371-426.
    [32]
    Bennett MD, Leitch IJ. Plant genome size research:a field in focus[J]. Ann Bot, 2005, 95(1):1-6.
    [33]
    Stebbins GL. Cytological characteristics associated with the different growth habits in the dicotyledons[J]. Am J Bot, 1938, 25(3):189-198.
    [34]
    Stebbins GL. Variationand Evolutionin Plants[M]. New York:Columbia University Press, 1950.
    [35]
    Lewitsky G. The karyotype in systematics (on the base of karyology of the subfamily Helleborae)[J]. Trudy Prikl Bot, 1931, 27:187-240.
    [36]
    Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, et al. The chromosome counts database (CCDB) -a community resource of plant chromosome numbers[J]. New Phytol, 2015, 206(1):19-26.
    [37]
    Brad B, Nicole H, Lu Z, Antonio RGJ, Dmitry M, et al. The taxonomic name resolution service:an online tool for automated standardization of plant names[J]. BMC Bioinformatics, 2013, 14(1):1-15.
    [38]
    Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.
    [39]
    Wu ZY, Raven PH, Hong DY, et al. Flora of China:Vol. 1-24[M]. Beijing:Science Press, 1994-2013.
    [40]
    Wu PC, Crosby MR, et al. Moss Flora of China:Vol. 1-2[M]. Beijing:Science Press, 1999-2005.
    [41]
    Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H. Polyploidy in the flora of the Hengduan Mountains hotspot, southwes-tern China[J]. Ann Missouri Bot Gard, 2005, 92(2):275-306.
    [42]
    王家坚, 彭智邦, 孙航, 聂泽龙, 孟盈. 青藏高原与横断山被子植物区系演化的细胞地理学特征[J]. 生物多样性, 2017, 25(2):218-225.

    Wang JJ, Peng ZB, Sun H, Nie ZL, Meng Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and Hengduan Mountains[J]. Biodiversity Science, 2017, 25(2):218-225.
    [43]
    Adams KL, Wendel JF. Polyploidy and genome evolution in plants[J]. Curr Opin Plant Biol, 2005, 8(2):135-141.
    [44]
    Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy[J]. New Phytol, 2010, 186(1):5-17.
    [45]
    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. The frequency of polyploid speciation in vascular plants[J]. Proc Natl Acad Sci USA, 2009, 106(33):13875-13879.
    [46]
    李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4):297-302.

    Li MX, Chen RY. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4):297-302.
    [47]
    Astuti G, Roma-Marzio F, Peruzzi L. Traditional karyomorphological studies:can they still provide a solid basis in plant systematics?[J]. Flora Mediterranea, 2017, 27:91-98.
    [48]
    Altınordu F, Peruzzi L, Yu Y, He XJ. A tool for the analysis of chromosomes:KaryoType[J]. Taxon, 2016, 65(3):586-592.
    [49]
    Peruzzi L, Altınordu F. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa[J]. Comp Cytogenet, 2014, 8(4):337-349.
    [50]
    Peruzzi L, Eroǧlu HE. Karyotype asymmetry:again, how to measure and what to measure?[J]. Comp Cytogenet, 2013, 7(1):1.
    [51]
    Paszko B. A critical review and a new proposal of karyotype asymmetry indices[J]. Plant Syst Evol, 2006, 258(1-2):39-48.
    [52]
    Peruzzi L, Leitch IJ, Caparelli KF. Chromosome diversity and evolution in Liliaceae[J]. Ann Bot, 2009, 103(3):459-475.
    [53]
    Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2):201-220.
    [54]
    Arano H. Cytological studies in subfamily Carduoideae (Compositae) of JapanⅨ.[J]. The Botanical Magazine, 1963, 76:32.
    [55]
    Huziwara Y. Karyotype analysis in some genera of Compositae.Ⅷ. Further studies on the chromosomes of Aster[J]. Am J Bot, 1962, 49(2):116-119.
    [56]
    Zarco CR. A new method for estimating karyotype asymmetry[J]. Taxon, 1986, 35(3):526-530.
    [57]
    Watanabe K, Yahara T, Denda T, Kosuge K. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae):statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information[J]. J Plant Res, 1999, 112(2):145-161.
    [58]
    Greilhuber J, Speta F. C-banded karyotypes in the Scilla hohenackeri group, S. persica, and Puschkinia (Lilia-ceae)[J]. Plant Syst Evol, 1976, 126(2):149-188.
    [59]
    Dolezel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size[J]. Ann Bot, 2005, 95(1):99-110.
    [60]
    Garcia S, Leitch IJ, Anadon-Rosell A, Canela MÁ, Gálvez F. Plant DNA C-values database[DB/OL].[2019-03-01]. http://data.kew.org/cvalues/.
    [61]
    Loureiro J, Suda J, Doležel J, Santos C. FLOWER:a plant DNA flow cytometry database[M]//Doležel J, Greilhuber J, Suda J, eds. Flow Cytometry with Plant Cells:Analysis of Genes, Chromosomes and Genomes. Weinheim:Wiley-VCH, 2007.
    [62]
    Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, et al. GSAD:a genome size in the Asteraceae database[J]. Cytometry A, 2011, 79(6):401-404.
    [63]
    Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides:novel nucleic acid affinity probes[J]. Proc Natl Acad Sci USA, 1981, 78(11):6633-6637.
    [64]
    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS.In situ localization of parental genomes in a wide hybrid[J]. Ann Bot, 1989, 64(3):315-324.
    [65]
    Liu JY, She CW, Hu ZL, Xiong ZY, Liu LH, Song YC. A new chromosome fluorescence banding technique combining DAPI staining with image analysis in plants[J]. Chromosoma, 2004, 113(1):16-21.
    [66]
    Glick L, Mayrose I. ChromEvol:assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny[J]. Mol Biol Evol, 2014, 31(7):1914-1922.
    [67]
    Rice A, Šmarda P, Novosolov M, Drori M, Glick L, et al. The global biogeography of polyploid plants[J]. Nat Ecol Evol, 2019, 3(2):265-273.
    [68]
    Qiao X, Li Q, Yin H, Qi K, Li L, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants[J]. Genome Biol, 2019, 20(1):38.
    [69]
    Zhang JZ. Evolution by gene duplication:an update[J]. Trends Ecol Evol, 2003, 18(6):292-298.
    [70]
    D'Ambrosio U, Alonso-Lifante MP, Barros K, Kovařík A, Mas dXG, Garcia S. B-chrom:a database on B-chromosomes of plants, animals and fungi[J]. New Phytol, 2017, 216(3):635-642.
    [71]
    Bosch M, Simon J, López-Pujol J, Blanché C. DCDB:an updated on-line database of chromosome numbers of tribe Delphinieae (Ranunculaceae)[J]. Flora Mediterranea, 2016, 26:191-201.
    [72]
    Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. Ancestral polyploidy in seed plants and angiosperms[J]. Nature, 2011, 473(7345):97-100.
    [73]
    孙航. 多学科融合、多尺度探索:植物区系地理研究的新趋势[J]. 生物多样性, 2017, 25(2):109-110.

    Sun H. Multi-disciplinary integration and multi-scale exploration:a new trend in the study of Floristic Geography[J]. Biodiversity Science, 2017, 25(2):109-110.
  • Related Articles

    [1]Liu Fenfen, Mo Liangtuan, Ou Guoteng, Nie Yimei, Niu Tao, Huang Qinjun. Genetic diversity and genetic structure analysis of wild Chinese Rosa roxburghii Tratt. germplasm resources[J]. Plant Science Journal, 2024, 42(3): 350-358. DOI: 10.11913/PSJ.2095-0837.23248
    [2]ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
    [3]TAO Ai-Fen, QI Jian-Min, SU Jian-Guang, FANG Ping-Ping, LIN Li-Hui, XU Jian-Tang, WU Jian-Mei, LIN Pei-Qing. Analysis of Genetic Diversity of Jute (Corchorus L.) Germplasm Revealed by SRAP[J]. Plant Science Journal, 2012, (2): 178-187. DOI: 10.3724/SP.J.1142.2012.20178
    [4]MA Rui-Jun, LU Jian-Ying. Genetic Diversity of Ground Cover Plant Potentilla anserina L.[J]. Plant Science Journal, 2010, 28(4): 473-479.
    [5]QIN Yong-Yan, WANG Yi-Ling, ZHANG Qin-Di, BI Run-Cheng, YAN Gui-Qin. Analysis on the Population Genetic Diversity of an Endangered Plant (Elaeagnus mollis) by SSR Markers[J]. Plant Science Journal, 2010, 28(4): 466-472.
    [6]ZHOU Yuan, GAO Lei, WANG Zhi-Wei, WANG Ting. Application of Molecular Marker Techniques in Genetic Diversity of Pteridophytes[J]. Plant Science Journal, 2009, 27(6): 667-673.
    [7]REN Xiao-Ping, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong, WANG Sheng-Yu, LI Dong. Genetic Diversity of Arachis hypogaea var.hirsute in Peanut[J]. Plant Science Journal, 2007, 25(4): 401-405.
    [8]XIA Jing, GUO You-Hao. ISSR Analysis for Genetic Diversity of Pedicularis dunniana[J]. Plant Science Journal, 2006, 24(6): 565-568.
    [9]BIN Xiao-Yun, TANG Shao-Qing, ZHOU Jun-Ya, SONG Hong-Tao, LI Zun-Yi. ISSR Analysis on Genetic Diversity of Camellia nitidissima Chi (Theaceae) in China[J]. Plant Science Journal, 2005, 23(1): 20-26.
    [10]CHENG Zhong-Ping, CHEN Zhi-Wei, HU Chun-Gen, DENG Xiu-Xin. Study on Genetic Diversity of Amygdalus persica Based on RAPD Markers[J]. Plant Science Journal, 2002, 20(2): 89-99.

Catalog

    Article views (1146) PDF downloads (1217) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return