Advance Search
Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337
Citation: Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337

Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (41601059).

More Information
  • Received Date: October 28, 2018
  • Revised Date: December 10, 2018
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • The endangered relict plant Tetraena mongolica Maxim was studied, with the MaxEnt and Bioclim models used to predict potentially suitable regions. We used the knife-cutting method and environmental variable response curves to evaluate the dominant environmental factors affecting the distribution of T. mongolica. Furthermore, we used the ArcGIS natural discontinuity method to divide fitness levels. Results showed that T. mongolica was mainly distributed in the Xinjiang Uygur Autonomous Region, Tibet Region, Ningxia Hui Autonomous Region, Inner Mongolia, and the Gansu, Qinghai, Shaanxi, Shanxi, Hebei, Liaoning, Jilin, and Heilongjiang provinces in China, with a total area of 1.49×106 km2. Highly suitable zones were found in the Maowusu Sandy Land of Wuhai city, the Tengger Desert in the Alxa Left Banner, the southeastern part of Yinshan Mountain, and mountains in the Helan range. The potential distribution area of T. mongolica will be reduced to north of Inner Mongolia and western Northeast China by 2050. The Area Under Curve (AUC) average values of the two models were all above 0.8, justifying their application for predicting potential areas of T. mongolica. Among the 19 environmental variables, the main factors affecting the potential distribution of T. mongolica were average precipitation of the coldest quarter and temperature annual range, followed by the coefficient of variation of precipitation seasonality and standard deviation (SD) of temperature seasonality.
  • [1]
    Kozak KH, Graham CH, Wiens JJ. Integrating GIS-based environmental data into evolutionary biology[J]. Trends Ecol Evol, 2008, 23(3):141-148.
    [2]
    IPCC. Climate Change 2013:The Physical Science Basis Working group I to the Fifth Assessment Report[M/OL]. Cambridge:Cambridge University Press, 2013.
    [3]
    邹旭, 彭冶, 王璐, 李垚, 张往祥, 刘雪. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5):676-686.

    Zou X, Peng Y, Wang L, Li Y, Zhang WX, Liu X. Impact of climate change on the distribution pattern of Malus baccata (L.) Borkh. in China since the Last Glacial Maximum[J]. Plant Science Journal, 2018, 36(5):676-686.
    [4]
    Solomon S, Qin D, Manning M, et al. Climate Change 2007:The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2007:18.
    [5]
    刘文胜, 游简舲, 曾文斌, 齐丹卉. 气候变化下青藏苔草地理分布的预测[J]. 中国草地学报, 2018, 40(5):43-49.

    Liu WS, You JL, Zeng WB, Qi DH. Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model[J]. Chinese Journal of Grassland, 2018, 40(5):43-49.
    [6]
    乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学, 2013, 43(11):915-927.

    Qiao HJ, Hu JH, Huang JH. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11):915-927.
    [7]
    朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Pu WJ, Gao YB. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
    [8]
    徐家文, 史家浩, 任强, 李绍勤. 基于BIOCLIM模型的扶桑绵粉蚧在中国的适生性分析[J]. 湖北农业科学, 2015, 54(11):2631-2633.

    Xu JW, Shi JH, Ren Q, Li SQ. Potential distribution of Phenacoccus solenopsis in China by the BIOCLIM model[J]. Hubei Agricultural Sciences, 2015, 54(11):2631-2633.
    [9]
    艾科拜尔·木哈塔尔, 热木图拉·阿卜杜克热木, 马合木提·哈力克. 基于生态位模型的艾比湖国家级自然保护区马鹿生境评价[J]. 生态学报, 2017, 37(11):3919-3925.

    Akbar Muhtar, Rahmutulla Abdukerim, Mahmut Halik. Assessing habitat suitability for Cervuselaphus in the Ebinur Lake National Nature Reserve[J]. Acta Ecologica Sinica, 2017, 37(11):3919-3925.
    [10]
    付贵全, 徐先英, 马剑平, 徐梦莎, 刘江, 丁爱强. 基于MaxEnt下梭梭潜在地理分布对水热条件的响应[J]. 草业科学, 2016, 33(11):2173-2179.

    Fu GQ, Xu XY, Ma JP, Xu MS, Liu J, Ding AQ. Responses of Haloxylon ammodendron potential geographical distribution to the hydrothermal conditions under MaxEnt model[J]. Pratacultural Science, 2016, 33(11):2173-2179.
    [11]
    王运生. 生态位模型在外来入侵物种风险评估中的应用研究[D]. 湖南:湖南农业大学, 2007.
    [12]
    杨持, 智颖飙, 征荣. 四合木种群的生态适应性[J]. 生态学报, 2006, 26(1):91-96.

    Yang C, Zhi YB, Zheng R. An analysis of ecological adaptability on Tetraena mongolica Maxim. populations[J]. Acta Ecologica Sinica, 2006, 26(1):91-96.
    [13]
    甄江红, 陈德喜, 玉山, 刘果厚. 濒危植物四合木生境适宜性变化分析[J]. 干旱区资源与环境, 2011, 25(7):188-195.

    Zheng JH, Chen DX, Yu S, Liu GH. Habitat suitability change for endangered plant Tetraena mongolica Maxim.[J]. Journal of Arid Land Resources and Environmen, 2011, 25(7):188-195.
    [14]
    张云飞, 杨持, 陈家宽. 四合木(Tetraena mongolica)分布区景观结构时空变化分析[J]. 武汉植物学研究, 2001, 19(1):25-30.

    Zhang YF, Yang C, Cheng JK. Spatial-temporal change of landscape structure in the distribution region of Tetraena mongolica[J]. Journal of Wuhan Botanical Research, 2001, 19(1):25-30.
    [15]
    甄江红. 濒危植物四合木生境的景观动态与适宜性评价研究[D]. 呼和浩特:内蒙古农业大学, 2008.
    [16]
    Wang WF, Hao WD, Bian ZF, Lei SG, Wang XS, Sang SX, Xu SC. Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China:A geochemical perspective[J]. Int J Coal Geol, 2014, 132(1):94-102.
    [17]
    Wang GL, Lin QQ, Xu YN. Tetraena mongolica Maxim. can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems[J]. Phytochemistry, 2007, 68(15):2112-2117.
    [18]
    Weselake RJ. Industrial Oil Crops[M]. New York:AOCS Press, 2016:413-434.
    [19]
    Lu KQ, Xie G, Li M, Li JF, Trivedi A, et al. Dataset of pollen morphological traits of 56 dominant species among desert vegetation in the eastern arid central Asia[J]. Data in Brief, 2018, 18:1022-1046.
    [20]
    Lu KQ, Gan Xie, Li M, Li JF, Anjali Trivedi, David K, et al. Pollen spectrum a cornerstone for tracing the evolution of the eastern central asian desert[J]. Quaternary Sci Rev, 2018, 186:111-122.
    [21]
    Wei XB, Xue JQ, Wang SL, Xue YQ, Lin H, Shao XF, et al. Fatty acid analysis in the seeds of 50Paeonia ostii individuals from the same population[J]. J Integr Agr, 2018, 17(8):1758-1767.
    [22]
    Lauterbach M, van der Merwe PW, Keßler L, Pirie MD, Bellstedt DU, Kadereit G. Evolution of leaf anatomy in arid environments:A case study in southern African Tetraena and Roepera (Zygophyllaceae)[J]. Mol Phylogenet Evol, 2016, 97:129-144.
    [23]
    王光明. 近二十年人为干扰对乌海市四合木景观格局影响研究[D]. 呼和浩特:内蒙古大学, 2012.
    [24]
    Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiov Th, 2004, 3(2):319-322.
    [25]
    张颖, 李君, 林蔚, 强胜. 基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J]. 应用生态学报, 2011, 22(11):2970-2976.

    Zhang Y, Li J, Lin W, Qiang S. Prediction of potentialt distriburion area of Erigeron philadelphicus in China based on MaxEnt model[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2970-2976.
    [26]
    张路. MAXENT最大熵模型在预测物种潜在分布范围方面的应用[J]. 生物学通报, 2015, 50(11):9-12.

    Zhang L. Application of the MAXENT maximumentropy model in predicting the potential distribution of species[J]. Bulletin of Biology, 2015, 50(11):9-12.
    [27]
    李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153-164.

    Li X, Li Y, Fang YM. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model[J]. Scientia Silvae Sinicae, 2018, 54(8):153-164.
    [28]
    王茹琳, 高晓清, 王闫利, 姜淦, 沈沾红, 林姗. 基于MaxEnt的非洲橘硬蓟马在全球及中国的潜在分布区预测[J]. 中国农学通报, 2014, 30(28):315-320.

    Wang RL, Gao XQ, Wang YL, Jiang G, Shen ZH, Lin S. Potential distribution of Scirtothrips aurantii in China and the world predicted by MaxEnt[J]. China Agricultural Science Bulletin, 2014, 30(28):315-320.
    [29]
    陈铁柱, 刘建辉, 周先建, 张美, 辜彬, 廖述吉. 基于MaxEnt和ArcGIS预测合欢潜在分布及适宜性评价[J]. 北方园艺, 2017, 41(16):191-195.

    Chen TZ, Liu JX, Zhou XJ, Zhang M, Gu B, Liao SJ. Potential distribution prediction and suitability evaluation of Albizia julibrissin Durazz. based on maxent modeling and GIS[J]. Northern Horticulture, 2017, 41(16):191-195.
    [30]
    陈林. 红火蚁(Solenopsis invicta)在我国的潜在分布研究[D]. 北京:中国农业科学院, 2007.
    [31]
    洪波. 基于GIS的有害生物空间分布预测系统研究[D]. 杨凌:西北农林科技大学, 2009.
    [32]
    宋花玲, 贺佳, 虞慧婷, 李玲. 应用ROC曲线下面积对两相关诊断试验进行评价和比较[J]. 第二军医大学学报, 2006, 27(5):562-563.

    Song HL, He J, Yu HT, Li L. Area under ROC curves in evaluation and comparison of two correlated diagnostic tests[J]. Academic Journal of Second Military Medical University, 2006, 27(5):562-563.
    [33]
    王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.

    Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
    [34]
    Hewitt GM. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405:907-913.
    [35]
    徐庆, 刘世荣, 臧润国, 郭泉水, 郝玉光. 中国特有植物四合木种群的生殖生态特征:种群生殖值及生殖分配研究[J]. 林业科学, 2001, 37(2):36-41.

    Xu Q, Liu SR, Zang RG, Guo QS, Hao YG. The characteristics of reproductive ecology of endemic species Tetraena mongolica population in China[J]. Scientia Silvae Sinicae, 2001, 37(2):36-41.
    [36]
    吴建国. 气候变化对我国7种植物潜在分布的影响[J]. 广西植物, 2011, 31(5):595-607, 694.

    Wu JG. The potential effects of climate change on the distributions of 7 plants in China[J]. Guihaia, 2011, 31(5):595-607, 694.
    [37]
    Mckenney DW, Pedlar JH, Lawrence K, Campbell K. Potential impacts of climate change on the distribution of North American trees[J]. BioScience, 2007, 57:939-948.
    [38]
    Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320:1768-1771.
    [39]
    Engler R, Randin CF, Thuiller W, Dullinger S. 21st century climate change threatens mountain flora unequally across Europe[J]. Global Change Biol, 2011, 17(7):2330-2341.
    [40]
    张兴旺, 李垚, 谢艳萍, 包先明, 方炎明. 气候变化对黄山花楸潜在地理分布的影响[J]. 植物资源与环境学报, 2018, 27(4):31-41.

    Zhang XW, Li Y, Xie YP, Bao XM, Fang YM. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. Journal of Plant Resources and Environment, 2018, 27(4):31-41.
    [41]
    孙平. 四合木(Tetraena mongolica)保护遗传学研究及三种西鄂尔多斯濒危植物微卫星标记的筛选[D]. 合肥:安徽大学, 2018.
    [42]
    杨超. 蒙古高原和青藏高原针茅属植物适宜分布区及其与气候因子的相关性[D]. 呼和浩特:内蒙古大学, 2016.
    [43]
    刘超, 霍宏亮, 田路明, 董星光, 齐丹, 张莹, 等. 基于MaxEnt模型不同气候变化情景下的豆梨潜在地理分布[J].应用生态学报, 2018, 29(11):3696-3704.

    Liu C, Huo HL, Tian LM, Dong XG, Qi D, Zhang Y, et al. Potential geographical distribution of Pyrus calleryana under different climate change scenarios based on the MaxEnt model[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3696-3704.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (1126) PDF downloads (631) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return