Advance Search
Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367
Citation: Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367

Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis

Funds: 

This work was supported by grants from the Specialized Research Fund for the Doctoral Program of Higher Education (2012142130009) and Independent Innovation Fund Project of Huazhong University of Science and Technology (2013TS079).

More Information
  • Received Date: December 09, 2018
  • Revised Date: March 03, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • Based on our previous transcriptome analysis, a new P450 hydroxylase gene was identified and named TcCYP725A22 according to homological analysis. The TcCYP725A22 cDNA was 1500 bp in length and encoded 499 amino acids. Bioinformatics predicted that the TcCYP725A22 protein contained a transmembrane region and catalytically active domains but no signal peptide. Functional analysis of TcCYP725A22 was carried out in Saccharomyces cerevisiae strain WAT11. Western blotting results indicated that the target protein was expressed successfully in WAT11. Furthermore, LC-MS analysis showed that TcCYP725A22 expressed in yeast was able to transform taxusin to its hydroxyl derivative, indicating that it had catalytic activity.
  • [1]
    Sun NK, Kohli A, Huang SL, Chang TC, Chao CCK. Androgen receptor transcriptional activity and chromatin modifications on the ABCB1/MDR gene are critical for taxol resistance in ovarian cancer cells[J]. J Cell Physiol, 2019, 234(6):8760-8775.
    [2]
    Ketchum RE, Wherland L, Croteau R. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures[J]. Plant Cell Rep, 2007, 26(7):1025-1033.
    [3]
    Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O. Combinatorial biosynthesis of medicinal plant secondary metabolites[J]. Biomol Eng, 2006, 23(6):265-279.
    [4]
    Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, et al. Production of the anticancer drug taxol in Taxus baccata suspension cultures:a review[J]. Process Biochem, 2011, 46(1):23-34.
    [5]
    Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran[J]. FEMS Microbiol Lett, 2012, 328(2):122-129.
    [6]
    Yang N, Pan X, Chen G, Sarsaiya S, Yu J, et al. Fermentation engineering for enhanced paclitaxel production by Taxus media endophytic fungus MF-5(Alternaria sp.)[J]. J Biobased Mater Bio, 2018, 12(6):545-550.
    [7]
    Tije AJ, Verweij J, Loos WJ, Sparreboom A. Pharmacological effects of formulation vehicles:implications for cancer chemotherapy[J]. Clin Pharmac Okinet, 2003, 42(7):665-685.
    [8]
    Matoba H, Watanabe T, Nagatomo M, Inoue M. Convergent synthesis of taxol skeleton via decarbonylative radical coupling reaction[J]. Org Lett, 2018, 20(23):7554-7557.
    [9]
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. Production of the antimalarial drug precursor artemi-sinic acid in engineered yeast[J]. Nature, 2006, 440(7086):940-943.
    [10]
    Yan X, Fan Y, Wei W, Wang P, Liu QF, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Res, 2014, 24(6):770-773.
    [11]
    Awasthi D, Wang L, Rhee MS, Wang Q, Chauliac D, et al. Metabolic engineering of Bacillus subtilis for production of D-lactic acid[J]. Biotech Bioeng, 2018, 115(2):453-463.
    [12]
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000):70-74.
    [13]
    Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotech, 2015, 33(4):377-383.
    [14]
    Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanop-oulos G, et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli[J]. Proc Natl Acad Sci USA, 2016, 113(12):3209-3214.
    [15]
    Liao WF, Zhao SY, Zhang M, Dong KG, Chen Y, et al. Transcriptome assembly and systematic identification of novel cytochrome P450s in Taxus chinensis[J]. Front Plant Sci, 2017, 8:1468.
    [16]
    Zhang CH, Mei XG, Liu L, Yu LJ. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis[J]. Biotechnol Lett, 2000, 22(19):1561-1564.
    [17]
    Roberts SC. Production and engineering of terpenoids in plant cell culture[J]. Nat Chem Biol, 2007, 3(7):387-395.
    [18]
    Howat S, Park B, Oh IS, Jin YW, Lee EK, et al. Paclita-xel:biosynthesis, production and future prospects[J]. New Biotechnol, 2014, 31(3):242-245.
    [19]
    Jennewein S, Long RM, Williams RM, Croteau R. Cytochrome P450 taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis[J]. Chem Biol, 2004, 11(3):379-387.
    [20]
    Schoendorf A, Rithner CD, Williams RM, Croteau R. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase c DNA from Taxus and functional expression in yeast[J]. Proc Natl Acad Sci USA, 2001, 98(4):1501-1506.
    [21]
    Jennewein S, Rithner CD, Williams RM, Croteau R. Taxol biosynthesis:taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Proc Natl Acad Sci USA, 2001, 98(24):13595-13600.
    [22]
    Chau M, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in taxol biosynthesis[J]. Arch Biochem Biophys, 2004, 427(1):48-57.
    [23]
    Chau M, Jennewein S, Walker K, Croteau R. Taxol biosynthesis:molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase[J]. Chem Biol, 2004, 11(5):663-672.
    [24]
    陈清浦, 廖卫芳, 付春华, 赵春芳, 余龙江. 紫杉醇生物合成途径中羟化酶的研究进展[J]. 生物工程学报, 2016, 32(5):554-564.

    Chen QP, Liao WF, Fu CH, Zhao CF, Yu LJ. Research progress in hydroxylase in taxol biosynthetic pathway[J]. Chinese Journal of Biotechnology, 2016, 32(5):554-564.
    [25]
    Eisenreich W, Menhard B, Lee MS. Multiple oxygenase reactions in the biosynthesis of taxoids[J]. J Am Chem Soc, 1998, 120(37):9694-9695.
    [26]
    Walker K, Schoendorf A, Croteau R. Molecular cloning of ataxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli[J]. Arch Biochem Biophys, 2000, 374(2):371-380.
    [27]
    Walker K, Croteau R. Taxol biosynthesis:molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli[J]. Proc Natl Acad Sci USA, 2000, 97(25):13591-13596.
  • Related Articles

    [1]Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781
    [2]HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543.
    [3]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [4]CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21.
    [5]TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100.
    [6]Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122.
    [7]Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188.
    [8]Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214.
    [9]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [10]Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130.
  • Cited by

    Periodical cited type(7)

    1. 蔡焕满,吴素美,吴逸卿,熊艳云,林阳,毛志斌,吴友贵,吴秋丰. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征. 浙江林业科技. 2024(01): 1-7 .
    2. 黎毅,戴克元,唐国平,杜建会,陈桃,江南,牛香豫,余扬波. 基于遥感生态指数的广东石门台国家级自然保护区生态环境质量评价. 热带地理. 2024(03): 429-441 .
    3. 邹艳丽,王倩,丁巧玲,周奇,刘忠成,陈志晖,廖文波. 罗霄山脉甜槠(Castanopsis eyrei)群落的纬度地带性研究. 生态科学. 2023(06): 93-104 .
    4. 张银,吴浩,徐耀粘,王世彤,杨腾,李晶,吕林玉,周天阳,肖之强,王建,江明喜. 湖北九宫山甜槠群落结构与优势种的空间分布格局研究. 长江流域资源与环境. 2021(05): 1130-1140 .
    5. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .
    6. 周茹君,曾颖,梁小翠,闫文德,张翔. 湖南芦头林场甜槠天然林群落结构特征. 湖南林业科技. 2020(04): 85-91 .
    7. 杨礼旦,陈应强,杨学成. 贵州台江县野生木本资源及其利用分析. 山地农业生物学报. 2020(05): 67-77 .

    Other cited types(1)

Catalog

    Article views (694) PDF downloads (573) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return