Advance Search
Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
Citation: Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374

Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL

Funds: 

This work was supported by a grant from the State Key Laboratory of Crop Stress Biology for Arid Areas.

More Information
  • Received Date: December 02, 2018
  • Revised Date: January 10, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • The vitamin E gene TaHGGT-7AL and two other copies were cloned from Triticum aestivum L. variety ‘Kenong 199’and the sequence structure and phylogenetic relationship of the protein sequence were analyzed by bioinformatics. Results showed that the coding region of the TaHGGT-7AL gene was 1227 bp in length, encoding a total of 408 amino acids; the sequence identity of TaHGGT-7AL with the two other copies was 95.45%. The TaHGGT-7AL protein sequence had nine α-helices and showed the sequence homology with grass HGGT protein of between 58.7% and 98.5%. The three TaHGGT genes were located on the 7AL, 7BL, and 7DL chromosomes of the genome, each having a conserved domain of the UbiA prenyltransferase family associated with the membrane and a transit peptide. Phylogenetic analysis showed that TaHGGT-7AL was closely related to gramineous plants. The qRT-PCR analysis results showed that TaHGGT-7AL was only expressed in T.aestivum hulls and grains, and the highest expression was observed 13 d after flowering. Under ABA, low temperature (4℃), drought, and dark stress treatments, the expression of TaHGGT-7AL was up-regulated compared with the control; after 24h of NaCl treatment, the expression increased, indicating that TaHGGT-7AL responds to abiotic stress.
  • [1]
    Mène-Saffrané L. Vitamin E biosynthesis and its regulation in plants[J]. Antioxidants, 2017, 7(1):2.
    [2]
    Kim YH, Lee YY, Kim YH, Choi MS, Jeong KH, et al. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT[J]. J Agric Food Chem, 2011, 59(2):584-591.
    [3]
    Matringe M, Ksas B, Rey P, Havaux M. Tocotrienols, the unsaturated forms of vitamin E, can function as antioxi-dants and lipid protectors in tobacco leaves[J]. Plant Physiol, 2008, 147(2):764-778.
    [4]
    Hunter SC, Cahoon EB. Enhancing vitamin E in oilseeds:unraveling tocopherol and tocotrienol biosynthesis[J]. Lipids, 2007, 42(2):97-108.
    [5]
    Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, et al. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues[J]. Phytochem Lett, 2006, 67(12):1185-1195.
    [6]
    张桂云. 水稻维生素E、C代谢调控研究[D]. 扬州:扬州大学, 2012.
    [7]
    Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491(7426):705-710.
    [8]
    Gutierrez-Gonzalez JJ, Garvin DF. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome[J]. Plant Biotechnol J, 2016, 14(11):2147-2157.
    [9]
    Hiroyuki T, Yukinori Y, Masahiro T, Noriaki T, Shigeru S, et al. Generation of transgenic tobacco plants with enhanced tocotrienol levels through the ectopic expression of rice homogentisate geranylgeranyl transferase[J]. Plant Biotechnol, 2015, 32(3):233-238.
    [10]
    Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content[J]. Nat Biotechnol, 2003, 21(9):1082-1087.
    [11]
    Chen J, Liu C, Shi B, Chai Y, Han N, et al. Overexpression of HvHGGT enhances tocotrienol levels and antioxidant activity in barley[J]. J Agric Food Chem, 2017, 65(25):5181-5187.
    [12]
    Kong SL, Abdullah SNA, Chai LH. Molecular cloning, gene expression profiling and in silico sequence analysis of vitamin E biosynthetic genes from the oil palm[J]. Plant Gene, 2016, 5(C):100-108.
    [13]
    谈晶晶. 小麦转基因技术优化的探索[D]. 扬州:扬州大学, 2018.
    [14]
    田文, 郭启平, 李梓彰, 张珊, 闻珊珊, 等. 普通小麦DREB基因家族的全基因组鉴定及热胁迫下的表达模式分析[J]. 麦类作物学报, 2018, 38(10):1146-1156.

    Tian W, Guo QP, Li ZZ, Zhang S, Wen SS, et al. Genome-wide identification and expression analysis under heat stress of the DREB transcription factor family in bread wheat (Triticum aestivum L.)[J]. Journal of Triticeae Crops, 2018, 38(10):1146-1156.
    [15]
    刘燕, 赵毅, 吕千, 张丽, 李立群, 等. 小麦TaHTAS-5A基因的克隆、表达分析及亚细胞定位[J]. 麦类作物学报, 2018, 38(10):1137-1145.

    Liu Y, Zhao Y, Lü Q, Zhang L, Li LQ, et al. Cloning, expression analysis and subcellular localization ofTaHTAS-5A gene from wheat (Triticum aestivum)[J]. Journal of Triticeae Crops, 2018, 38(10):1137-1145.
    [16]
    Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, et al. Vitamin E biosynthesis:functional characterization of the monocot homogentisate geranylgeranyl transferase[J]. Plant J, 2011, 65(2):206-217.
    [17]
    贾会丽, 王学敏, 高洪文, 董洁, 王运琦, 等. 紫花苜蓿γ-生育酚甲基转移酶(γ-TMT)基因的克隆与逆境下的表达分析[J]. 草业学报, 2012, 21(6):198-206.

    Jia HL, Wang XM, Gao HW, Dong J, Wang YQ, et al. Cloning of γ-tocopherol methyltransferase (γ-TMT) gene from alfalfa and its expression analysis under stress[J]. Journal of Grass Industry, 2012, 21(6):198-206.
    [18]
    Mène-Saffrané L, Pellaud S. Current strategies for vitamin E biofortification of crops[J]. Curr Opin Biotechnol, 2017, 44:189-197.
    [19]
    Li Y, Zhou Y, Wang Z, Xiao FS, Ke XT, et al. Engineering tocopherol biosynthetic pathway in Arabidopsis, leaves and its effect on antioxidant metabolism[J]. Plant Sci, 2010, 178(3):312-320.
    [20]
    Abbasi AR, Hajirezaei M, Hofius D, Daniel H, Uwe S, Lars MV, et al. Specific Roles of -and tocopherol in abiotic stress responses of transgenic tobacco[J]. Plant Physiol, 2007, 143(4):1720-1738.
    [21]
    Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, et al. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress:Physiological and chlorophyll a fluorescence measurements[J]. BBA-Bioenergetics, 2010, 1797(8):1428-1438.
    [22]
    Zhang C, Cahoon RE, Hunter SC, Chen M, Han J, et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production[J]. Plant J, 2013, 73(4):628-639.
    [23]
    Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, et al. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol:Implication to the molecular mechanism of their antioxidant potency[J]. Biochemistry, 1993, 32(40):10692-10699.
    [24]
    Chen D, Li Y, Fang T, Shi X, Chen X, et al. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice[J]. Plant Sci, 2015, 244:31-39.
  • Related Articles

    [1]Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781
    [2]HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543.
    [3]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [4]CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21.
    [5]TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100.
    [6]Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122.
    [7]Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188.
    [8]Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214.
    [9]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [10]Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130.
  • Cited by

    Periodical cited type(7)

    1. 蔡焕满,吴素美,吴逸卿,熊艳云,林阳,毛志斌,吴友贵,吴秋丰. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征. 浙江林业科技. 2024(01): 1-7 .
    2. 黎毅,戴克元,唐国平,杜建会,陈桃,江南,牛香豫,余扬波. 基于遥感生态指数的广东石门台国家级自然保护区生态环境质量评价. 热带地理. 2024(03): 429-441 .
    3. 邹艳丽,王倩,丁巧玲,周奇,刘忠成,陈志晖,廖文波. 罗霄山脉甜槠(Castanopsis eyrei)群落的纬度地带性研究. 生态科学. 2023(06): 93-104 .
    4. 张银,吴浩,徐耀粘,王世彤,杨腾,李晶,吕林玉,周天阳,肖之强,王建,江明喜. 湖北九宫山甜槠群落结构与优势种的空间分布格局研究. 长江流域资源与环境. 2021(05): 1130-1140 .
    5. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .
    6. 周茹君,曾颖,梁小翠,闫文德,张翔. 湖南芦头林场甜槠天然林群落结构特征. 湖南林业科技. 2020(04): 85-91 .
    7. 杨礼旦,陈应强,杨学成. 贵州台江县野生木本资源及其利用分析. 山地农业生物学报. 2020(05): 67-77 .

    Other cited types(1)

Catalog

    Article views (745) PDF downloads (443) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return