Advance Search
Huang Wen-Jun, Liu Xiao-Li, Zhang Qi, Chen Mei-Yan, Zhong Cai-Hong. Research on changes in postharvest physiology and fruit quality of Actinidia chinensis ‘Donghong’ under different storage methods[J]. Plant Science Journal, 2019, 37(3): 382-388. DOI: 10.11913/PSJ.2095-0837.2019.30382
Citation: Huang Wen-Jun, Liu Xiao-Li, Zhang Qi, Chen Mei-Yan, Zhong Cai-Hong. Research on changes in postharvest physiology and fruit quality of Actinidia chinensis ‘Donghong’ under different storage methods[J]. Plant Science Journal, 2019, 37(3): 382-388. DOI: 10.11913/PSJ.2095-0837.2019.30382

Research on changes in postharvest physiology and fruit quality of Actinidia chinensis ‘Donghong’ under different storage methods

Funds: 

This work was supported by a grant from Hubei Technical Innovation Project (Major Project) (2016ABA109).

More Information
  • Received Date: January 07, 2019
  • Revised Date: January 29, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • Changes in the postharvest physiology and fruit quality of ‘Donghong’, a novel red-fleshed kiwifruit cultivar of Actinidia chinensis Planch., under ambient and cold storage were investigated to provide theoretical and technical guidelines for fruit preservation and marketing. ‘Donghong’ fruits from an orchard in Pujiang county, Sichuan Province, were collected and stored at ambient (20℃±1℃, relative humidity 70%-75%) and cold temperatures (1.5℃ ±0.5℃, relative humidity 90%-95%). The main physiological indices of the fruit, including fruit firmness, soluble solids content (SSC), total sugar (TS) content, titratable acidity (TA) content, SSC/TA and TS/TA ratios, vitamin C (Vc) content, weight loss rate, and rot rate, were measured once a week under ambient storage and every three weeks under cold storage. Results indicated that during both ambient and cold storage, fruit firmness dropped rapidly during the first three weeks and nine weeks of ambient and cold storage, respectively, then slowed down slightly until the end of storage. Four physiological indices, including SSC, TS content, and SSC/TA and TS/TA ratios, showed similar patterns during both ambient and cold storage, first increasing sharply and then maintaining a highly stable level during cold storage or continuing to rise slightly during ambient storage. TA showed a gradual decrease from 1.12% to 0.92% during ambient storage and from 1.12% to 0.94% during cold storage. Vc content gradually increased and reached a maximum of 134.40 mg/100 g after five weeks of ambient storage, or generally increased at first, then declined slightly, and finally reached a maximum of 151.13 mg/100 g after 18 weeks of cold storage. Both the weight loss and rot rates gradually increased with storage length under both temperatures, with a rapid increase under ambient storage and extremely slow increase under cold storage. Both indices reached a maximum level of 16.09% and 20% after 33 weeks of cold storage, respectively. The main physiological indices of the ‘Donghong’ fruit exhibited obvious changes in trends after three weeks of ambient storage and nine weeks of cold storage, respectively, after which the fruits reached optimal edibility. Moreover, the ‘Donghong’ fruit largely maintained a high quality, with a very low rate of fruit rot and rarely lignified flesh during the first 24 weeks of cold storage, revealing outstanding storability.
  • [1]
    Ferguson AR. World economic importance[C]//Testolin R, Huang HW, Ferguson AR, eds. The Kiwifruit Genome. Cham:Springer International Publishing, 2016.
    [2]
    黄宏文. 中国猕猴桃种质资源[M]. 北京:中国林业出版社, 2013:8-9.
    [3]
    齐秀娟, 徐善坤, 林苗苗, 李玉阔, 孙雷明, 方金豹. 红肉猕猴桃果实着色机制研究进展[J]. 果树学报, 2015, 32(6):1232-1240.

    Qi XJ, Xu SK, Lin MM, Li YK, Sun LM, Fang JB. Research advances on fruit coloring mechanism in red-fleshed kiwifruit[J]. Journal of Fruit Science, 2015, 32(6):1232-1240.
    [4]
    钟彩虹, 韩飞, 李大卫, 刘小莉, 张琼, 等. 红心猕猴桃新品种‘东红’的选育[J]. 果树学报, 2016, 33(12):1596-1599.

    Zhong CH, Han F, Li DW, Liu XL, Zhang Q, et al. Breeding of red-fleshed kiwifruit cultivar ‘Donghong’[J]. Journal of Fruit Science, 2016, 33(12):1596-1599.
    [5]
    Man YP, Wang YC, Li ZZ, Jiang ZW, Yang HL, et al. High-temperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in red-fleshed Actinidia chinensis[J]. Physiol Plantarum, 2015, 153(4):565-583.
    [6]
    李黎, 钟彩虹, 李大卫, 张胜菊, 黄宏文. 猕猴桃细菌性溃疡病的研究进展[J]. 华中农业大学学报, 2013, 32(5):124-133.

    Li L, Zhong CH, Li DW, Zhang SJ, Huang HW. Research progress on bacterial canker disease of kiwifruit[J]. Journal of Huazhong Agricultural University, 32(5):124-133.
    [7]
    黄宏文. 猕猴桃研究进展(Ⅷ)[M]. 北京:科学出版社, 2018.
    [8]
    黄文俊, 钟彩虹. 猕猴桃果实采后生理研究进展[J]. 植物科学学报, 2017, 35(4):622-630.

    Huang WJ, Zhong CH. Research advances in the postharvest physiology of kiwifruit[J]. Plant Science Journal, 2017, 35(4):622-630.
    [9]
    张美芳, 何玲, 张美丽, 郭宇欢. 猕猴桃鲜果贮藏保鲜研究进展[J]. 食品科学, 2014, 35(11):343-347.

    Zhang MF, He L, Zhang ML, Guo YH. Advances in pre-servation methods for kiwifruit[J]. Food Science, 2014, 35(11):343-347.
    [10]
    Wang M, Li M, Meng A. Selection of a new red-fleshed kiwifruit cultivar ‘Hongyang’[J]. Acta Hortic, 2003, 610:115-117.
    [11]
    王玉萍, 饶景萍, 杨青珍, 李萌, 索江涛, 赵海亮. 猕猴桃3个品种果实耐冷性差异研究[J]. 园艺学报, 2013, 40(2):341-349.

    Wang YP, Rao JP, Yang QZ, Li M, Suo JT, Zhao HL. Chilling tolerance difference among three kiwifruit cultivars[J]. Acta Horticulturae Sinica, 2013, 40(2):341-349.
    [12]
    马秋诗, 饶景萍, 李秀芳, 孙振营, 索江涛. 贮前热水处理对‘红阳’猕猴桃果实冷害的影响[J]. 食品科学, 2014, 35(14):256-261.

    Ma QS, Rao JP, Li XF, Sun ZY, Suo JT. Effect of presto-rage hot water treatments on chilling injury in ‘Hongyang’ kiwifruit[J]. Food Science, 2014, 35(14):256-261.
    [13]
    韩飞, 陈美艳, 李昆同, 黄文俊, 闫春林, 等. 不同产地‘金圆’猕猴桃低温贮藏下的生理指标及贮藏性变化[J]. 植物科学学报, 2018, 36(3):381-392.

    Han F, Chen MY, Li KT, Huang WJ, Yan CL, et al. Changes in physiological indices and storage properties of ‘Jinyuan’ kiwifruit from different orchards under low temperature storage[J]. Plant Science Journal, 2018, 36(3):381-392.
    [14]
    钱政江, 刘亭, 王慧, 屈红霞, 钟彩虹, 等. 采收期和贮藏温度对金艳猕猴桃品质的影响[J]. 热带亚热带植物学报, 2011, 19(2):127-134.

    Qian ZJ, Liu T, Wang H, Qu HX, Zhong CH, et al. Effects of harvest stage and storage temperature on quality of ‘Jinyan’ kiwifruit (Actinidia chinensis x A. eriantha)[J]. Journal of Tropical and Subtropical Botany, 2011, 19(2):127-134.
    [15]
    Shiri MA, Ghasemnezhad M, Fatahi Moghadam J, Ebrahimi R. Effect of CaCl2 sprays at different fruit development stages on postharvest keeping quality of ‘Hayward’ kiwifruit[J]. J Food Process Pres, 2016, 40(4):624-635.
    [16]
    王仁才, 谭兴和, 吕长平, 熊兴耀. 猕猴桃不同品系耐贮性与采后生理生化变化[J]. 湖南农业大学学报, 2000, 26(1):46-49.

    Wang RC, Tan XH, Lü CP, Xiong XY. Fruit storability and physio-biochemical changes during postharvest ripening in different clones of Actinidia[J]. Journal of Hunan Agricultural University, 2000, 26(1):46-49.
    [17]
    王绍华, 杨建东, 段春芳, 高俊燕, 杨世品, 等. 猕猴桃果实采后成熟生理与保鲜技术研究进展[J]. 中国农学通报, 2013, 29(10):102-107.

    Wang SH, Yang JD, Duan CF, Gao JY, Yang SP, et al. Advances of research on mature physiological and preservation technology of kiwifruit[J]. Chinese Agricultural Science Bulletin, 2013, 29(10):102-107.
    [18]
    钟雨. 毛花猕猴桃‘华特’采后果实抗坏血酸代谢的研究[D]. 杭州:浙江工商大学, 2017.
    [19]
    张佳佳, 郑小林, 励建荣. 毛花猕猴桃‘华特’果实采后生理和品质变化[J]. 食品科学, 2011, 32(8):309-312.

    Zhang JJ, Zheng XL, Li JR. Physiological and quality changes in Actinidia eriantha Benth ‘Walter’ fruit during storage at normal temperature[J]. Food Science, 2011, 32(8):309-312.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]LIU Li-Yan, CAI Xin-Bin, JIANG Xiao-Heng, WAN Xian-Chong. Species Composition and Floral Components of Vascular Plants in Ganjiahu Nature Reserve of Xinjiang[J]. Plant Science Journal, 2016, 34(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2016.50695
    [5]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [6]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [7]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [8]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [9]PENG Ling, ZHU Bi-Feng. Analysis and Evaluation of the Nutritional Components of Fleshy Fruit and Fleshy Leaf in Camellia oleifera Abel.[J]. Plant Science Journal, 2010, 28(4): 486-490.
    [10]YUAN Ping, YUAN Xiao. Analysis on the Constituents of the Absolute Oil of Lysimachia foenum-graceum Hance and Study on the Application of the Insecticidal Activity of Its Components[J]. Plant Science Journal, 2007, 25(4): 417-420.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(23)

Catalog

    Article views (888) PDF downloads (602) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return