Advance Search
Li Shi-Sheng, He Yu-Qing. Biogenesis and regulation of oil bodies during early stage seed formation in Brassica napus[J]. Plant Science Journal, 2019, 37(3): 389-395. DOI: 10.11913/PSJ.2095-0837.2019.30389
Citation: Li Shi-Sheng, He Yu-Qing. Biogenesis and regulation of oil bodies during early stage seed formation in Brassica napus[J]. Plant Science Journal, 2019, 37(3): 389-395. DOI: 10.11913/PSJ.2095-0837.2019.30389

Biogenesis and regulation of oil bodies during early stage seed formation in Brassica napus

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31401416, 31701466).

More Information
  • Received Date: December 02, 2018
  • Revised Date: January 23, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • Rapeseed is one of the most important oil crops in China. Most oil in rapeseed is stored in the oil bodies. In this paper, the biogenesis of oil bodies and gene expression level variations in oil body proteins and fatty acid synthesis transcription factors were investigated during embryogenesis in two Brassica napus L. cultivars (‘Westar’ and ‘Topas’) via ultrastructural observation and real-time fluorescence quantitative PCR. Results showed that oil bodies existed in early embryos of B. napus, even in the embryo proper and suspensor, 9-11 d after pollination (globular embryo stage). The gene expression level of all oil body proteins (oleosins, steroleosins, and BnCLO1), except BnCLO3, increased at the heart embryo stage and continued to increase during the embryonic development stage. The gene expression levels of fatty acid synthesis transcription factors (BnLEC1, BnL1L, BnWRI1, and BnFUS3) increased at the early stages and decreased at the late stages, but their peak times were different. The gene expression level of BnLEC1 peaked first, followed by BnL1L, BnWRI1, and BnFUS3 last. Our results showed that oil bodies exist in early embryos of B. napus, even at the globular-embryo stage, and the gene expression level of their structural proteins and transcription factors increases from the heart-embryo stage.
  • [1]
    程红焱, 宋松泉. 种子的贮油细胞器-油体及其蛋白[J]. 植物学通报, 2006, 23(4):418-430.

    Cheng HY, Song SQ. Seed lipid storage organelles:oil bodys and their proteins[J]. Chinese Bulletin of Botany, 2006, 23(4):418-430.
    [2]
    Tzen JTC. Integral proteins in plant oil bodies[J]. ISRN Botany, 2012, 2012:173954.
    [3]
    Jolivet P, Boulard C, Bellamy A, Valot B, d'Andréa S, et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus[J]. J Plant Physiol, 2011, 168(17):2015-2020.
    [4]
    Obermeier C, Hosseini B, Friedt W, Snowdon R. Gene expression profiling via LongSAGE in a non-model plant species:a case study in seeds of Brassica napus[J]. BMC Genomics, 2009, 10:295.
    [5]
    闵文莉, 曹喜涛, 季更生, 张国政. 调控脂肪酸合成植物转录因子的研究进展[J]. 发酵科技通讯, 2017, 46(2):107-112.

    Min WL, Cao XT, Ji GS, Zhang GZ. Researches of plant transcription factors involving in fatty acid synthesis[J]. Bulletin of Fermentation Science and Technolgy, 2017, 46(2):107-112.
    [6]
    宋雷, 范成明, 陈宇红, 张新永, 胡赞民. 植物油脂合成的分子调控机制[J]. 分子植物育种, 2016, 14(8):2178-2187.

    Song L, Fan CM, Chen YH, Zhang XY, Hu ZM. The molecular regulation mechanism of the plant lipid biosynthesis[J]. Molecular Plant Breeding, 2016, 14(8):2178-2187.
    [7]
    李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展[J]. 分子植物育种, 2016, 14(9):2509-2518.

    Li YL, Sun QF, Wang YP. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant[J]. Molecular Plant Breeding, 2016, 14(9):2509-2518.
    [8]
    Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al.LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proc Natl Acad Sci USA, 2017, 114(32):6710-6719.
    [9]
    Tao Z, Shen L, Gu X, Wang Y, Yu H, et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants[J]. Nature, 2017, 551(7678):124-128.
    [10]
    Gnesutta N, Saad D, Chaves-Sanjuan A, Mantovani R, Nardini M. Crystal structure of the Arabidopsis thaliana L1L/NF-YC3 histone-fold dimer reveals specificities of the LEC1 family of NF-Y subunits in plants[J]. Mol Plant, 2017, 10(4):645-648.
    [11]
    Tan H, Yang X, Zhang F, Zheng X, Qu C, et al. Enhanced seed oil production in canola by conditional expression of Brassica napusLEAFY COTYLEDON1 and LEC1-LIKE in developing seeds[J]. Plant Physiol, 2011, 156(3):1577-88.
    [12]
    Mu J, Tan H, Zheng Q, Fu F, Liang Y, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiol, 2008, 148(2):1042-1054.
    [13]
    Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. Plant J, 2004, 40(4):575-585.
    [14]
    Li Q, Shao J, Tang S, Shen Q, Wang T, et al. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus[J]. Front Plant Sci, 2015, 6:1015.
    [15]
    Kanai M, Mano S, Kondo M, Hayashi M, Nishimura M. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds[J]. Plant Biotechnol J, 2016, 14(5):1241-1250.
    [16]
    Zhang M, Cao X, Jia Q, Ohlrogge J.FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells[J]. Plant J, 2016, 88(1):95-107.
    [17]
    Elahi N, Duncan RW, Stasolla C. Decreased seed oil production inFUSCA3 Brassica napus mutant plants[J]. Plant Physiol Biochem, 2015, 96:222-230.
    [18]
    He YQ, Wu Y. Oil body biogenesis during Brassica napus embryogenesis[J]. J Integr Plant Biol, 2009, 51(8):792-799.
    [19]
    Boulard C, Bardet M, Chardot T, Dubreucq B, Gromova M, et al. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes[J]. Planta, 2015, 242(1):53-68.
    [20]
    Holbrook LA, van Rooijen GJ, Wilen RW, Moloney MM. Oilbody proteins in microspore-derived embryos of Brassica napus:hormonal, osmotic, and developmental regulation of synthesis[J]. Plant Physiol, 1991, 97(3):1051-1058.
    [21]
    何宇清, 操春燕, 沈文忠, 黄冬, 马胜, 吴燕. 甘蓝型油菜种子中油体的超微结构及蛋白质组分析[J]. 植物科学学报, 2017, 35(4):566-573.

    He YQ, Cao CY, Shen WZ, Huang D, Ma S, et al. Study on the ultrastructure and proteome of oil bodies in Brassica napus L. seeds[J]. Plant Science Journal, 2017, 35(4):566-573.
    [22]
    Gu J, Chao H, Wang H, Li Y, Li D, et al. Identification of the relationship between oil body morphology and oil content by microstructure comparison combining with QTL analysis in Brassica napus[J]. Front Plant Sci, 2017, 7:1989.
    [23]
    Borisjuk L, Neuberger T, Schwender J, Nicolas H, Sunderhaus S, et al. Seed architecture shapes embryo metabolism in oilseed rape[J]. Plant Cell, 2013, 25(5):1625-1640.
    [24]
    Tzen JT, Cao YZ, Laurent P, Ratnayake C, Huang AH. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiol, 1993, 101:267-276.
    [25]
    Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms[J]. Prog Lipid Res, 2001, 40(5):325-438.
    [26]
    Mantese AI, Medan D, Hall AJ. Achene structure, deve-lopment and lipid accumulation in sunflower cultivars differing in oil content at maturity[J]. Ann Bot Lond, 2006, 97(6):999-1010.
    [27]
    Miquel M, Trigui G, d'Andréa S, Kelemen Z, Baud S, et al. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds[J]. Plant Physiol, 2014, 164(4):1866-1878.
    [28]
    Kim HU, Hsieh K, Ratnayake C, Huang AH. A novel group of oleosins is present inside the pollen of Arabidopsis[J]. J Biol Chem, 2002, 277(25):22677-22684.
    [29]
    Hyun TK, Kumar D, Cho YY, Hyun HN, Kim JS. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax[J]. Gene, 2013, 515(2):454-460.
    [30]
    Lu C, Fulda M, Wallis JG, Browse J. A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis[J]. Plant J, 2006, 45(5):847-856.
    [31]
    Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis[J]. Plant Cell, 2006, 18(8):1961-1974.
    [32]
    Hernandez-Pinzon I, Patel K, Murphy DJ. The Brassica napus calcium-binding protein, caleosin, has distinct endoplasmic reticulum-and lipid body-associated isoforms[J]. Plant Physiol Biochem, 2001, 39(7-8):615-622.
  • Related Articles

    [1]Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781
    [2]HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543.
    [3]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [4]CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21.
    [5]TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100.
    [6]Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122.
    [7]Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188.
    [8]Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214.
    [9]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [10]Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130.
  • Cited by

    Periodical cited type(7)

    1. 蔡焕满,吴素美,吴逸卿,熊艳云,林阳,毛志斌,吴友贵,吴秋丰. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征. 浙江林业科技. 2024(01): 1-7 .
    2. 黎毅,戴克元,唐国平,杜建会,陈桃,江南,牛香豫,余扬波. 基于遥感生态指数的广东石门台国家级自然保护区生态环境质量评价. 热带地理. 2024(03): 429-441 .
    3. 邹艳丽,王倩,丁巧玲,周奇,刘忠成,陈志晖,廖文波. 罗霄山脉甜槠(Castanopsis eyrei)群落的纬度地带性研究. 生态科学. 2023(06): 93-104 .
    4. 张银,吴浩,徐耀粘,王世彤,杨腾,李晶,吕林玉,周天阳,肖之强,王建,江明喜. 湖北九宫山甜槠群落结构与优势种的空间分布格局研究. 长江流域资源与环境. 2021(05): 1130-1140 .
    5. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .
    6. 周茹君,曾颖,梁小翠,闫文德,张翔. 湖南芦头林场甜槠天然林群落结构特征. 湖南林业科技. 2020(04): 85-91 .
    7. 杨礼旦,陈应强,杨学成. 贵州台江县野生木本资源及其利用分析. 山地农业生物学报. 2020(05): 67-77 .

    Other cited types(1)

Catalog

    Article views (846) PDF downloads (564) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return