Citation: | Liu Mei-Hui, Lin Zhong-Yuan, Yang Ping-Fang, He Dong-Li. Research progress on the longevity mechanism of Nelumbo nucifera seeds[J]. Plant Science Journal, 2019, 37(3): 396-403. DOI: 10.11913/PSJ.2095-0837.2019.30396 |
[1] |
董新红, 宋明. 种子寿命研究进展[J]. 生物学杂志, 2001, 18(6):7-9.
Dong XH, Song M. The progress of research on seed life[J]. Journal of Biology, 2001, 18(6):7-9.
|
[2] |
张行言, 王其超. 中国荷花品种图志[M]. 北京:中国林业出版社, 2005:47-52.
|
[3] |
Ohga I. On the longevity of seeds of Nelumbo nucifera[J]. Plant J, 1923, 37:87-95.
|
[4] |
Shen-Miller J. Sacred lotus, the long-living fruits of China Antique[J]. Seed Sci Res, 2002, 12(3):131-143.
|
[5] |
Shen-Miller J, Turek J, Schopf JW, Tholandi M, Yang M, et al. Centuries-Old viable fruit of sacred lotus Nelumbo nucifera Gaertn var. China Antique[J]. Trop Plant Biol, 2013, 6(2-3):53-68.
|
[6] |
Buitink J, Leprince O. Intracellular glasses and seed survival in the dry state[J]. C R Biol, 2008, 331(10):788-795.
|
[7] |
周德龙, 高建华, 杨祎静, 陈霭君, 麦振龙. 莲子壳营养成分分析及类黄酮抗氧化活性研究[J]. 安徽农业科学, 2011, 39(7):3968-3970.
Zhou DL, Gao JH, Yang YJ, Chen AJ, Mai ZL. Analysis on the nutrient components of lotus seed shell and study on the antioxidation activity of flavonoid[J]. Journal of Anhui Agricultural Sciences, 2011, 39(7):3968-3970.
|
[8] |
黄迪惠, 胡崇琳, Credy HM, 谢笔钧,何慧, 杨尔宁. 莲子壳提取物中黄酮类物质的抗氧化活性及结构初探[J]. 食品科学, 2009, 30(23):209-213.
Hang DH, Hu CL, Credy HM, Xie BJ, He H, Yang EN. Antioxidant acticity and structure of flavonoids from epicarp of Nelumbo nucifera Geartn.[J]. Food Science, 2009, 30(23):209-213.
|
[9] |
Mohamedyasseen Y, Barringer SA, Splittstoesser WE, Costanza S. The role of seed coats in seed viability[J]. Bot Rev, 1994, 60(4):426-439
|
[10] |
Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higherplants[J]. Ann Bot, 2015, 115(7):1053-1074.
|
[11] |
陈轩, 周坚. 莲子皮化学成分的初步分析[J]. 农业机械, 2011(20):139-141.
Chen X, Zhou J. Preliminary analysis of chemical consti-tuents of lotus seed peel[J]. Farm Machinery, 2011(10):139-141.
|
[12] |
Li JJ, Shi T, Huang LY, He DL, Yang PF, et al. Syste-matic transcriptomic analysis provides insights into lotus (Nelumbo Nucifera) seed development[J]. Plant Growth Regul, 2018, 86:339-350.
|
[13] |
曾绍校. 莲子淀粉品质特性的研究与应用[D]. 福州:福建农林大学, 2007.
|
[14] |
刘子凡. 种子学[M]. 北京:化学工业出版社, 2016:26-35.
|
[15] |
Leopold AC, Sun WQ, Bernallugo I. The glassy state in seeds:analysis and function[J]. Seed Sci Res, 1994, 4(3):267-274.
|
[16] |
左宝玉, 唐崇钦, 宋云, 匡廷云, 段续川. 莲子胚为什么是绿色的?[J]. 植物杂志, 1985(6):12.
Zuo BY, Tang CQ, Song Y, Kuang TY, Duan XC. Why is lotus seed embryo green?[J]. Plants, 1985(6):12.
|
[17] |
黄天芳, 李长春, 肖丽. 对莲子胚芽变绿的探讨[J]. 中国园艺文摘, 2011, 27(11):16-17.
Huang TF, Li CC, Xiao L. Dicussion on the greening of the lotus[J]. Chinese Horiculture Abstracts, 2011, 27(11):16-17.
|
[18] |
Ushimaru T, Hasegawa T, Amano T, Katayama M, Tanaka S, et al. Chloroplasts in seeds and dark-grown seedlings of lotus[J]. J Plant Physiol, 2003, 160(3):321-324.
|
[19] |
季宏伟, 唐崇钦, 李良璧, 匡廷云. 莲胚芽暗萌发过程中的光合系统发育研究[J]. 植物学报, 2001, 43(11):1129-1133.
Ji HW, Tang CQ, Li LB, Kuang TY. Photosystem development in dark-grown lotus (Nelumbo nucifera) seedlings[J]. Bulletin of Botany, 2001, 43(11):1129-1133.
|
[20] |
Sano N, Rajjou L, North HM, Debeaujon I, Marionpoll A, et al. Staying alive:molecular aspects of seed longevity[J]. Plant Cell Physiol, 2016, 57(4):660-674.
|
[21] |
Verdier J, Buitink J. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of medicago truncatula seeds[J]. Plant Physiol, 2013, 163(2):757-774.
|
[22] |
Hyde EOC. The function of the hilum in some papiliona-ceae in relation to the ripening of the seed and the permea-bility of the testa[J]. Ann Bot, 1954, 18(2):241-256.
|
[23] |
Ganesh KJ, Song DP, Liu W, Han YY, Liu BL. Relationship between seed moisture content and acquisition of impermeability in Nelumbo nucifera (Nelumbonaceae)[J]. Acta Bot Bras, 2017, 31(4):639-644.
|
[24] |
Groot SPC, Surki AA, De Vos RCH, Kodde J. Seed sto-rage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions[J]. Ann Bot, 2012, 110(6):1149-1159.
|
[25] |
Bailly C. Active oxygen species and antioxidants in seed biology[J]. Seed Sci Res, 2004, 14(2):93-107.
|
[26] |
Veselovsky VA, Veselova TV. Lipid peroxidation, carbohydrate hydrolysis, and Amadori-Maillard reaction at early stages of dry seed aging[J]. Russ J Plant Physl, 2012, 59(6):811-817.
|
[27] |
Galland M, Huguet R, Arc E, Cueff G, Job D, et al. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination[J]. Mol Cell Proteomics, 2014, 13(1):252-268.
|
[28] |
Ray P, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5):981-990.
|
[29] |
Kocsy G. Die or survive? Redox changes as seed viability markers[J]. Plant Cell Environ, 2015, 38(12):1008-1010.
|
[30] |
Ding YF, Cheng HY, Song SQ. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds[J]. Sci China C Life Sci, 2008, 51(9):842-853.
|
[31] |
Chen HH, Chu P, Zhou YL, Ding Y, Huang SZ, et al. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cys-teine peroxiredox in antioxidant, enhances seed longevity and stress tolerance in Arabidopsis[J]. Plant J, 2016, 88(4):608-619.
|
[32] |
Shen-Miller J, Lindner P, Xie Y, Villa S, Wooding K, et al. Thermal-stable proteins of fruit of long-living sacred lotus Nelumbo nucifera Gaertn var. China Antique.[J]. Trop Plant Biol, 2013, 6(2-3):69-84.
|
[33] |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Bioch, 2010, 48(12):909-930.
|
[34] |
Kleindt CK, Stracke R, Mehrtens F, Weisshaar B. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway[J]. BMC Res Notes, 2010, 3(1):255.
|
[35] |
Yen GC, Duh PD, Su HJ. Antioxidant properties of lotus seed and its effect on DNA damage damage in human lymphocytes[J]. Food Chem, 2005, 89(3):379-385.
|
[36] |
Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity lymphocytes[J]. J Exp Bot, 2015, 66(20):6399-6413.
|
[37] |
Qi Y, Wang H, Zou Y, Liu C, Liu Y, et al. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice[J]. FEBS Lett, 2011, 585(1):231-239.
|
[38] |
Prietodapena P, Castaño R, Almoguera C, Jordano J. Improved resistance to controlled deterioration in transgenic seeds[J]. Plant Physiol, 2006, 142(3):1102-1112.
|
[39] |
Banti V, Loreti E, Novi G, Santaniello A, Aipl A, et al. Heat acclimation and cross-tolerance against anoxia in Arabidopsis[J]. Plant Cell Environ, 2010, 31(7):1029-1037.
|
[40] |
Malik MK, Slovin JP, Hwang CH, Zimmerman JL. Modified expression of a carrot small heat shock protein gene,Hsp17.7 results in increased or decreased thermotole-rance[J]. Plant J, 2010, 20(1):89-99.
|
[41] |
Herald V. The impact of oxidative stress on Arabidopsis, mitochondria[J]. Plant J, 2010, 32(6):891-904.
|
[42] |
Ravanel S, Gakière B, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants[J]. Proc Natl Acad Sci USA, 1998, 95(13):7805-7812.
|
[43] |
Schopf JW. The paleobiological record of photosynthesis[J]. Photosynth Res, 2011, 107(1):87-101.
|
[44] |
Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R. Exceptional seed longevity and robust growth:ancient sacred lotus from China[J]. Am J Bot, 1995, 82(11):1367-1380.
|
[45] |
Ogé L, Broyart C, Collet B, Godin B, Jallet D, et al. Protein damage and repair controlling seed vigor and longevity[J]. Methods Mol Biol, 2017, 773(773):369-384.
|
[46] |
Villa ST, Xu Q, Downie AB, Clarke SG. Arabidopsis protein repair L-isoaspartyl methyltransferases:predominant activities at lethal temperatures[J]. Physiol Plantarum, 2010, 128(4):581-592.
|
[47] |
Chu P, Chen H, Zhou Y, Li Y, Ding Y, et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor[J]. Planta, 2012, 235(6):1271-1288.
|
[48] |
Dong C, Zheng X, Diao Y, Wang Y, Zhou M, et al. Molecular cloning and expression analysis of a catalase gene (NnCAT) from Nelumbo nucifera[J]. Appl Biochm Biotechnol, 2015, 177(6):1216-1228.
|
[49] |
Cheng LB, Yang JJ, Yin L, Hui LC, Qian HM, et al. Transcription factorNnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana[J]. Biol Plantarum, 2017, 61(4):1-8.
|
[50] |
Wang Q, Guan Y, Wu Y, Chen H, Chen F, et al. Overexpression of a rice OsDREB gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008, 67(6):589-602.
|
[51] |
Zhou Y, Chu P, Chen H, Li Y, Liu J, et al. Overexpression of Nelumbo nucifera metallothioneins and 3 enhances seed germination vigor in Arabidopsis[J]. Planta, 2012, 235(3):523-537.
|
[52] |
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. Seed germination and vigor metallothionein[J]. Annu Rev Plant Biol, 2012, 63(3):507-533.
|
[53] |
Li YD. Study on the ABA content and SOD activity in ancient aotus and modern lotus seeds[J]. Chinese Bull Bot, 2000, 17(5):439-442.
|
[54] |
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis[J]. Embo J, 2014, 22(22):2623-2633.
|
[55] |
Wang Y, Fan GY, Liu YM, Sun FM, Chi CC, et al. The sacred lotus genome provides insights into the evolution of flowering plants[J]. Plant J, 2013, 76(4):557-567.
|
[56] |
Nelson DR. Cytochrome P450 genes from the sacred lotus genome[J]. Trop Plant Biol, 2013, 6(2-3):138-151.
|
[1] | Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781 |
[2] | HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543. |
[3] | HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468. |
[4] | CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21. |
[5] | TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100. |
[6] | Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122. |
[7] | Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188. |
[8] | Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214. |
[9] | Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380. |
[10] | Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130. |