Advance Search
Liu Mei-Hui, Lin Zhong-Yuan, Yang Ping-Fang, He Dong-Li. Research progress on the longevity mechanism of Nelumbo nucifera seeds[J]. Plant Science Journal, 2019, 37(3): 396-403. DOI: 10.11913/PSJ.2095-0837.2019.30396
Citation: Liu Mei-Hui, Lin Zhong-Yuan, Yang Ping-Fang, He Dong-Li. Research progress on the longevity mechanism of Nelumbo nucifera seeds[J]. Plant Science Journal, 2019, 37(3): 396-403. DOI: 10.11913/PSJ.2095-0837.2019.30396

Research progress on the longevity mechanism of Nelumbo nucifera seeds

Funds: 

This work was supported by a grant from the Knowledge Innovation Project of Chinese Academy of Sciences (Y455421Z02).

More Information
  • Received Date: November 25, 2018
  • Revised Date: December 25, 2018
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • Nelumbo nucifera Gaertn. belongs to the aquatic perennial herbs of Nelumbonaceae. The N. nucifera seeds exhibit strong vitality and can survive for more than a thousand years under natural and even extreme conditions. With the improvement of N. nucifera genome sequencing and gene annotation, some progress has been made in the study of the longevity mechanism of N. nucifera seeds. In this paper, the longevity mechanism is summarized from aspects of structure, morphology, anti-aging, and self-repair, and the prospects and challenges of follow-up research are discussed.
  • [1]
    董新红, 宋明. 种子寿命研究进展[J]. 生物学杂志, 2001, 18(6):7-9.

    Dong XH, Song M. The progress of research on seed life[J]. Journal of Biology, 2001, 18(6):7-9.
    [2]
    张行言, 王其超. 中国荷花品种图志[M]. 北京:中国林业出版社, 2005:47-52.
    [3]
    Ohga I. On the longevity of seeds of Nelumbo nucifera[J]. Plant J, 1923, 37:87-95.
    [4]
    Shen-Miller J. Sacred lotus, the long-living fruits of China Antique[J]. Seed Sci Res, 2002, 12(3):131-143.
    [5]
    Shen-Miller J, Turek J, Schopf JW, Tholandi M, Yang M, et al. Centuries-Old viable fruit of sacred lotus Nelumbo nucifera Gaertn var. China Antique[J]. Trop Plant Biol, 2013, 6(2-3):53-68.
    [6]
    Buitink J, Leprince O. Intracellular glasses and seed survival in the dry state[J]. C R Biol, 2008, 331(10):788-795.
    [7]
    周德龙, 高建华, 杨祎静, 陈霭君, 麦振龙. 莲子壳营养成分分析及类黄酮抗氧化活性研究[J]. 安徽农业科学, 2011, 39(7):3968-3970.

    Zhou DL, Gao JH, Yang YJ, Chen AJ, Mai ZL. Analysis on the nutrient components of lotus seed shell and study on the antioxidation activity of flavonoid[J]. Journal of Anhui Agricultural Sciences, 2011, 39(7):3968-3970.
    [8]
    黄迪惠, 胡崇琳, Credy HM, 谢笔钧,何慧, 杨尔宁. 莲子壳提取物中黄酮类物质的抗氧化活性及结构初探[J]. 食品科学, 2009, 30(23):209-213.

    Hang DH, Hu CL, Credy HM, Xie BJ, He H, Yang EN. Antioxidant acticity and structure of flavonoids from epicarp of Nelumbo nucifera Geartn.[J]. Food Science, 2009, 30(23):209-213.
    [9]
    Mohamedyasseen Y, Barringer SA, Splittstoesser WE, Costanza S. The role of seed coats in seed viability[J]. Bot Rev, 1994, 60(4):426-439
    [10]
    Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higherplants[J]. Ann Bot, 2015, 115(7):1053-1074.
    [11]
    陈轩, 周坚. 莲子皮化学成分的初步分析[J]. 农业机械, 2011(20):139-141.

    Chen X, Zhou J. Preliminary analysis of chemical consti-tuents of lotus seed peel[J]. Farm Machinery, 2011(10):139-141.
    [12]
    Li JJ, Shi T, Huang LY, He DL, Yang PF, et al. Syste-matic transcriptomic analysis provides insights into lotus (Nelumbo Nucifera) seed development[J]. Plant Growth Regul, 2018, 86:339-350.
    [13]
    曾绍校. 莲子淀粉品质特性的研究与应用[D]. 福州:福建农林大学, 2007.
    [14]
    刘子凡. 种子学[M]. 北京:化学工业出版社, 2016:26-35.
    [15]
    Leopold AC, Sun WQ, Bernallugo I. The glassy state in seeds:analysis and function[J]. Seed Sci Res, 1994, 4(3):267-274.
    [16]
    左宝玉, 唐崇钦, 宋云, 匡廷云, 段续川. 莲子胚为什么是绿色的?[J]. 植物杂志, 1985(6):12.

    Zuo BY, Tang CQ, Song Y, Kuang TY, Duan XC. Why is lotus seed embryo green?[J]. Plants, 1985(6):12.
    [17]
    黄天芳, 李长春, 肖丽. 对莲子胚芽变绿的探讨[J]. 中国园艺文摘, 2011, 27(11):16-17.

    Huang TF, Li CC, Xiao L. Dicussion on the greening of the lotus[J]. Chinese Horiculture Abstracts, 2011, 27(11):16-17.
    [18]
    Ushimaru T, Hasegawa T, Amano T, Katayama M, Tanaka S, et al. Chloroplasts in seeds and dark-grown seedlings of lotus[J]. J Plant Physiol, 2003, 160(3):321-324.
    [19]
    季宏伟, 唐崇钦, 李良璧, 匡廷云. 莲胚芽暗萌发过程中的光合系统发育研究[J]. 植物学报, 2001, 43(11):1129-1133.

    Ji HW, Tang CQ, Li LB, Kuang TY. Photosystem development in dark-grown lotus (Nelumbo nucifera) seedlings[J]. Bulletin of Botany, 2001, 43(11):1129-1133.
    [20]
    Sano N, Rajjou L, North HM, Debeaujon I, Marionpoll A, et al. Staying alive:molecular aspects of seed longevity[J]. Plant Cell Physiol, 2016, 57(4):660-674.
    [21]
    Verdier J, Buitink J. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of medicago truncatula seeds[J]. Plant Physiol, 2013, 163(2):757-774.
    [22]
    Hyde EOC. The function of the hilum in some papiliona-ceae in relation to the ripening of the seed and the permea-bility of the testa[J]. Ann Bot, 1954, 18(2):241-256.
    [23]
    Ganesh KJ, Song DP, Liu W, Han YY, Liu BL. Relationship between seed moisture content and acquisition of impermeability in Nelumbo nucifera (Nelumbonaceae)[J]. Acta Bot Bras, 2017, 31(4):639-644.
    [24]
    Groot SPC, Surki AA, De Vos RCH, Kodde J. Seed sto-rage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions[J]. Ann Bot, 2012, 110(6):1149-1159.
    [25]
    Bailly C. Active oxygen species and antioxidants in seed biology[J]. Seed Sci Res, 2004, 14(2):93-107.
    [26]
    Veselovsky VA, Veselova TV. Lipid peroxidation, carbohydrate hydrolysis, and Amadori-Maillard reaction at early stages of dry seed aging[J]. Russ J Plant Physl, 2012, 59(6):811-817.
    [27]
    Galland M, Huguet R, Arc E, Cueff G, Job D, et al. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination[J]. Mol Cell Proteomics, 2014, 13(1):252-268.
    [28]
    Ray P, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5):981-990.
    [29]
    Kocsy G. Die or survive? Redox changes as seed viability markers[J]. Plant Cell Environ, 2015, 38(12):1008-1010.
    [30]
    Ding YF, Cheng HY, Song SQ. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds[J]. Sci China C Life Sci, 2008, 51(9):842-853.
    [31]
    Chen HH, Chu P, Zhou YL, Ding Y, Huang SZ, et al. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cys-teine peroxiredox in antioxidant, enhances seed longevity and stress tolerance in Arabidopsis[J]. Plant J, 2016, 88(4):608-619.
    [32]
    Shen-Miller J, Lindner P, Xie Y, Villa S, Wooding K, et al. Thermal-stable proteins of fruit of long-living sacred lotus Nelumbo nucifera Gaertn var. China Antique.[J]. Trop Plant Biol, 2013, 6(2-3):69-84.
    [33]
    Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Bioch, 2010, 48(12):909-930.
    [34]
    Kleindt CK, Stracke R, Mehrtens F, Weisshaar B. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway[J]. BMC Res Notes, 2010, 3(1):255.
    [35]
    Yen GC, Duh PD, Su HJ. Antioxidant properties of lotus seed and its effect on DNA damage damage in human lymphocytes[J]. Food Chem, 2005, 89(3):379-385.
    [36]
    Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity lymphocytes[J]. J Exp Bot, 2015, 66(20):6399-6413.
    [37]
    Qi Y, Wang H, Zou Y, Liu C, Liu Y, et al. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice[J]. FEBS Lett, 2011, 585(1):231-239.
    [38]
    Prietodapena P, Castaño R, Almoguera C, Jordano J. Improved resistance to controlled deterioration in transgenic seeds[J]. Plant Physiol, 2006, 142(3):1102-1112.
    [39]
    Banti V, Loreti E, Novi G, Santaniello A, Aipl A, et al. Heat acclimation and cross-tolerance against anoxia in Arabidopsis[J]. Plant Cell Environ, 2010, 31(7):1029-1037.
    [40]
    Malik MK, Slovin JP, Hwang CH, Zimmerman JL. Modified expression of a carrot small heat shock protein gene,Hsp17.7 results in increased or decreased thermotole-rance[J]. Plant J, 2010, 20(1):89-99.
    [41]
    Herald V. The impact of oxidative stress on Arabidopsis, mitochondria[J]. Plant J, 2010, 32(6):891-904.
    [42]
    Ravanel S, Gakière B, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants[J]. Proc Natl Acad Sci USA, 1998, 95(13):7805-7812.
    [43]
    Schopf JW. The paleobiological record of photosynthesis[J]. Photosynth Res, 2011, 107(1):87-101.
    [44]
    Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R. Exceptional seed longevity and robust growth:ancient sacred lotus from China[J]. Am J Bot, 1995, 82(11):1367-1380.
    [45]
    Ogé L, Broyart C, Collet B, Godin B, Jallet D, et al. Protein damage and repair controlling seed vigor and longevity[J]. Methods Mol Biol, 2017, 773(773):369-384.
    [46]
    Villa ST, Xu Q, Downie AB, Clarke SG. Arabidopsis protein repair L-isoaspartyl methyltransferases:predominant activities at lethal temperatures[J]. Physiol Plantarum, 2010, 128(4):581-592.
    [47]
    Chu P, Chen H, Zhou Y, Li Y, Ding Y, et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor[J]. Planta, 2012, 235(6):1271-1288.
    [48]
    Dong C, Zheng X, Diao Y, Wang Y, Zhou M, et al. Molecular cloning and expression analysis of a catalase gene (NnCAT) from Nelumbo nucifera[J]. Appl Biochm Biotechnol, 2015, 177(6):1216-1228.
    [49]
    Cheng LB, Yang JJ, Yin L, Hui LC, Qian HM, et al. Transcription factorNnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana[J]. Biol Plantarum, 2017, 61(4):1-8.
    [50]
    Wang Q, Guan Y, Wu Y, Chen H, Chen F, et al. Overexpression of a rice OsDREB gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008, 67(6):589-602.
    [51]
    Zhou Y, Chu P, Chen H, Li Y, Liu J, et al. Overexpression of Nelumbo nucifera metallothioneins and 3 enhances seed germination vigor in Arabidopsis[J]. Planta, 2012, 235(3):523-537.
    [52]
    Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. Seed germination and vigor metallothionein[J]. Annu Rev Plant Biol, 2012, 63(3):507-533.
    [53]
    Li YD. Study on the ABA content and SOD activity in ancient aotus and modern lotus seeds[J]. Chinese Bull Bot, 2000, 17(5):439-442.
    [54]
    Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis[J]. Embo J, 2014, 22(22):2623-2633.
    [55]
    Wang Y, Fan GY, Liu YM, Sun FM, Chi CC, et al. The sacred lotus genome provides insights into the evolution of flowering plants[J]. Plant J, 2013, 76(4):557-567.
    [56]
    Nelson DR. Cytochrome P450 genes from the sacred lotus genome[J]. Trop Plant Biol, 2013, 6(2-3):138-151.
  • Related Articles

    [1]Yuan Pu-Ying, Song Xing-Rong, Shao Yi-Fan. Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link[J]. Plant Science Journal, 2019, 37(6): 781-787. DOI: 10.11913/PSJ.2095-0837.2019.60781
    [2]HU Jian-Zhu, ZOU Pu, WANG Xiao-Bin, LIAO Jing-Ping. Floral Vascular System Anatomy of Heliconia rostrata(Heliconiaceae)[J]. Plant Science Journal, 2011, 1(5): 537-543.
    [3]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [4]CHEN Shun-Qiang, WANG Yang, ZHANG Zhi-Hong, WANG Ling-Xia, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Genetic Dissection of Vascular Bundle Systems in Peduncle and Panicle Characters in Rice (Oryza sativa L.) by Means of RFLP Markers[J]. Plant Science Journal, 2004, 22(1): 15-21.
    [5]TANG Yuan-Jiang, LIAO Jing-Ping. Studies on Vascular System Anatomy of the Flower of Commelina communis L.[J]. Plant Science Journal, 2001, 19(2): 96-100.
    [6]Li Wei. FLORA STUDIES ON AQUATIC VASCULAR PLANTS IN LAKE HONGHU[J]. Plant Science Journal, 1997, 15(2): 113-122.
    [7]Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188.
    [8]Hu ChuanJiong, Zhou Pingzhen, Chen Huakui. THE STUDY ON MORPHOLOGICAL DEVELOPMENT OF NODULAR VASCULAR BUNDLES OF CORIARIA NEPALENSIS WALL.[J]. Plant Science Journal, 1993, 11(3): 211-214.
    [9]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [10]Feng Can, Wang Xuelei, Wang zengxue, Ban Jide. STUDIES ON THE COMMUNITIES OF AQUATIC VASCULAR PLANTS IN CHANGHU LAKE[J]. Plant Science Journal, 1989, 7(2): 123-130.
  • Cited by

    Periodical cited type(7)

    1. 蔡焕满,吴素美,吴逸卿,熊艳云,林阳,毛志斌,吴友贵,吴秋丰. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征. 浙江林业科技. 2024(01): 1-7 .
    2. 黎毅,戴克元,唐国平,杜建会,陈桃,江南,牛香豫,余扬波. 基于遥感生态指数的广东石门台国家级自然保护区生态环境质量评价. 热带地理. 2024(03): 429-441 .
    3. 邹艳丽,王倩,丁巧玲,周奇,刘忠成,陈志晖,廖文波. 罗霄山脉甜槠(Castanopsis eyrei)群落的纬度地带性研究. 生态科学. 2023(06): 93-104 .
    4. 张银,吴浩,徐耀粘,王世彤,杨腾,李晶,吕林玉,周天阳,肖之强,王建,江明喜. 湖北九宫山甜槠群落结构与优势种的空间分布格局研究. 长江流域资源与环境. 2021(05): 1130-1140 .
    5. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .
    6. 周茹君,曾颖,梁小翠,闫文德,张翔. 湖南芦头林场甜槠天然林群落结构特征. 湖南林业科技. 2020(04): 85-91 .
    7. 杨礼旦,陈应强,杨学成. 贵州台江县野生木本资源及其利用分析. 山地农业生物学报. 2020(05): 67-77 .

    Other cited types(1)

Catalog

    Article views (849) PDF downloads (800) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return