Advance Search
Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
Citation: Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503

Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana

Funds: 

This work was supported by a grant from the Key Project of Education Department of Sichuan (09ZA068).

More Information
  • Received Date: January 10, 2019
  • Revised Date: March 03, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2019
  • The full-length cDNA of the chitinase gene PlCHI was cloned from Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin by RT-PCR, with sequence characteristics and gene expression levels then analyzed. Results showed that the open reading frame of PlCHI was 1017 bp in length and encoded a protein with 338 amino acids. Protein sequence domain analysis indicated that PlCHI was a class Ⅰ chitinase that belonged to the 19 family and exhibited lysozyme activity. The sequence of PlCHI had high similarity to the protein sequences of other plant chitinases. Phylogenetic analysis showed that the PlCHI sequence was closely related to Pinaceae plants such as Picea sitchensis (Bong.) Corr. and Pinus thunbergii Parl. In this study, we further transferred the PlCHI recombinant plasmid into E. coli BL21 (DE3) to express a protein of about 45 kD, which was mainly in the form of an inclusion body. The optimal expression conditions of the gene were 0.2 mmol/L IPTG at 25℃ for 4 h induction.
  • [1]
    Zhang JY, Guo ZR, Qu SC, Zhang Z. Identification and molecular characterization of a classⅠ chitinase gene (Mhchit1) from Malus hupehensis[J]. Plant Mol Biol Rep, 2012, 30(3):760-767.
    [2]
    Graca I, Liang JS, Guilherme M, Tavares P, Ferreira-Pinto MM, et al. Cloning, overexpression and functional characterization of a classⅢ chitinase from Casuarina glauca nodules[J]. Symbiosis, 2016, 70(1-3):139-148.
    [3]
    蒋选利, 李振岐, 康振生, 闫海林. 几丁质酶与植物的抗病性[J]. 西北农业学报, 2002, 11(3):71-75.

    Jiang XL, Li ZQ, Kang ZS, Yan HL. Chitinase and plant disease resistance[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2002, 11(3):71-75.
    [4]
    苟艳, 谢天, 蒲莉, 王刚刚. 解淀粉芽孢杆菌MY001菌株对几丁质的降解及对芦笋茎枯病菌的拮抗作用[J]. 应用与环境生态学报, 2018, 24(6):1318-1323.

    Gou Y, Xie T, Pu L, Wang GG. The degradation of Chitin and antagonism on Phomopsis aspasagi by Bacillus amyloliquefaciens MY001[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(6):1318-1323.
    [5]
    He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclero-tium rolfsii[J]. Plant Cell Rep, 2008, 27(5):903-909.
    [6]
    罗晶晶, 张仁英, 齐晓花, 徐强, 陈学好. 黄瓜几丁质酶基因克隆及与白粉病抗性关系的初步研究[J]. 分子植物育种, 2015, 13(7):1584-1591.

    Luo JJ, Zhang RY, Qi XH, Xu Q, Chen XH. A preliminary study on cloning of chitinase gene and relationships to resistance of powdery mildew in cucumber (Cucumis sativus L.)[J]. Molecular Plant Breeding, 2015, 13(7):1584-1591.
    [7]
    Samac DA, Shah DM. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter[J]. Plant Cell, 1991, 3(10):1063-1072.
    [8]
    Dong S, Tredway LP, Shew HD, Wang GL, Sivamani E, et al. Resistance of transgenic tall fescue to two major fungal diseases[J]. Plant Sci, 2007, 173(5):501-509.
    [9]
    Broglie KE, Gaynor JJ, Broglie RM. Ethylene-regulated gene expression:Molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris[J]. Proc Natl Acad Sci USA, 1986, 83(18):6820-6824.
    [10]
    Park SM, Kim DH, Truong NH, Itoh Y. Heterologous expression and characterization of classⅢ chitinases from rice (Oryza sativa L.)[J]. Enzyme Microb Tech, 2002, 30(6):697-702.
    [11]
    Rao DH, Gowda LR. Abundant classⅢ acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein[J]. J Agric Food Chem, 2008, 56(6):2175-2182.
    [12]
    Lin SY, Kwan HS. Effect of chitinase on resistance to fungal pathogens in sea buckthorn, Hippophae rhamnoides, and cloning of classⅠ andⅢ chitinase genes[J]. Biochem Genet, 2012, 50(7-8):600-615.
    [13]
    Tohidfar M, Mohammadi M, Ghareyazie B. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene[J]. Plant Cell Tissue Org Cult, 2005, 83(1):83-96.
    [14]
    Liu ZH, Wang YC, Qi XT, Yang CP. Cloning and characterization of a chitinase geneLbchi31 from Limonium bico-lor and identification of its biological activity[J]. Mol Biol Rep, 2010, 37(5):2447-2453.
    [15]
    Ye XY, Ng TB. A chitinase with antifungal activity from the mung bean[J].Protein Expr Purif, 2005, 40(2):230-236.
    [16]
    Khan A, Nasir IA, Tabassum B, Aaliya K, Tariq M, et al. Expression studies of chitinase gene in transgenic potato against Alternaria solani[J]. Plant Cell Tiss Organ Cult, 2017, 128(3):563-576.
    [17]
    Moradyar M, Motallcbi M, Zamani MR, Aghazadeh R. Pathogen-induced expression of chimeric chitinase gene containing synthetic promoter confers antifungal resistance in transgenic canola[J]. In Vitro Cell Dev Biol Plant, 2016, 52(2):119-129.
    [18]
    Rajesh T, Maruthaslam S, Kalpana K, Poovannan K, Kumar KK. Stability of sheath blight resistance in transgenic ASD16 rice lines expressing a ricechi11 gene encoding chitinase[J]. Biol Plantarum, 2016, 60(4):749-756.
    [19]
    Pirttil AM, Laukkanen H, Hohtola A. Chitinase production in pine callus (Pinus sylvestris L.):a defense reaction against endophytes?[J].Planta, 2002, 214(6):848-852.
    [20]
    Liu JJ, Chan D, Sturrock R, Sniezko RA. Genetic variation and population differentiation of the endochitinase gene family in Pinus monticola[J]. Plant Syst Evol, 2014, 300(6):1313-1322.
    [21]
    Kozlowski G, Metraux JP. Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow:histological and biochemical responses[J]. Eur J Plant Path, 1998, 104(3):225-234.
    [22]
    Asiegbu FO, Daniel G, Johansson M. Defense related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref[J]. Physiol Mol Plant Pathol, 1994, 45(1):1-19.
    [23]
    Johnk N, Hietala AM, Fossdal CG, Collinge DB, Newman MA. Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph:Rhizoctonia sp.)[J]. Tree Physiol, 2005, 25(12):1533-1543.
    [24]
    刘裕峰, 朱天辉, 刘应高, 李姝江, 龙旭梅, 等. 板栗咖啡酸氧甲基转移酶基因CmCOMT的克隆及原核表达[J]. 西北植物学报, 2017, 37(12):2332-2341.

    Liu YF, Zhu TH, Liu YG, Li SJ, Long XM, et al. Cloning and prokaryotic expression of caffeic acid o-methyltransferase gene CmCOMT from Castanea mollissima Bl[J]. Acta Botanica Boreali-occidentalia Sinca, 2017, 37(12):2332-2341.
    [25]
    朱晨, 张舒婷, 常笑君, 赵姗姗, 王仲, 等. 茶树几丁质酶基因的克隆及其在干旱胁迫下的表达分析[J]. 热带作物学报, 2017, 30(5):894-902.

    Zhu C, Zhang ST, Chang XJ, Zhao SS, Wang Z, et al. Cloning and its expression analysis of chitinase under drought stress in Camellia sinensis[J]. Chinese Journal of Tropical Crops, 2017, 30(5):894-902.
    [26]
    Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL. Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum[J]. Mol Biol Rep, 2013, 40(1):147-158.
    [27]
    Kang JN, Kang HJ, Sun HJ, Kwon YI, Yang DH, et al. Molecular cloning and characterization of chitinase genes from zoysiagrass (Zoysia Japonica Steud.)[J]. Plant Biotechnol Rep, 2016, 10(3):171-183.
    [28]
    Pulla RK, Lee OR, In JG, Parvin S, Kim YJ, et al. Identification and characterization of classⅠ chitinase in Panax ginseng C. A. Meyer[J]. Mol Biol Rep, 2011, 38(1):95-102.
    [29]
    Takashima T, Ohnuma T, Fukamizo T. NMR assignments and ligand-binding studies on a two-domain family GH19 chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen[J]. Biomol NMR Assign, 2017, 11(1):85-90.
    [30]
    Oelofse D, Gazendam I, Veale A, Tchatchou AD, Berger D. Functional characterization of a defense-related class-Ⅲ chitinase promoter from Lupinus albus, active in legume and monocot tissues[J]. Eur J Plant Pathol, 2016, 146(4):923-936.
    [31]
    Kitaoku Y, Umemoto N, OhnumaT, Numata T, Taira T, et al. A classⅢ chitinase without disulfide bonds from the fern, Pteris ryukyuensis:crystal structure and ligand-binding studies[J]. Planta, 2015, 242(4):895-907.
    [32]
    Chandra S, Dutta AK, Chandrashekara NK, Acharya K. In silico characterization, homology modeling of Camellia sinensis chitinase and its evolutionary analyses with other plant chitinases[J]. Proc Natl Acad Sci India B, 2017, 87(3):685-695.
    [33]
    Robert N, Roche K, Lebeau Y, Breda C, Boulay M, et al. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens[J]. Plant Sci, 2002, 162(3):389-400.
    [34]
    Singh HR, Deka M, Das S. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis (L.) O. Kuntze) by overexpression of classⅠ chitinase gene from potato (Solanum tuberosum)[J]. Funct Integr Genomics, 2015, 15(4):461-480.
    [35]
    程笑笑, 冯自力, 冯鸿杰, 赵丽红, 师勇强, 等. 真菌源几丁质酶在植物抗真菌病害中的应用[J]. 植物保护, 2017, 43(3):29-35.

    Chen XX, Feng ZL, Feng HJ, Zhao LH, Shi YQ, et al. Applications of fungal chitinase in the fungal disease-resistant plants[J]. Plant Protection, 2017, 43(3):29-35.
    [36]
    Li DM, Staehelin C, Wang WT, Peng SL. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris[J]. Plant Mol Biol Rep, 2010, 28(1):90-101.
    [37]
    Landim PGC, Correia TO, Silva FDA, Nepomuceno DR, Costa HPS, et al. Production in Pichia pastoris, antifungal activity and crystal structure of a classⅠ chitinase from cowpea (Vigna unguiculata):Insights into sugar binding mode and hydrolytic action[J]. Biochimie, 2017, 135:89-103.
    [38]
    Oneda H, Inouye K. Refolding and recovery of recombinant human matrix metalloproteinase 7(matrilysin) from inclusion bodies expressed by Escherichia coli[J]. J Biochem, 1999, 126(5):905-911.
    [39]
    Singh A, Kirubakaran SI, Sakthivel N. Heterologous expression of new antifungal chitinase from wheat[J]. Protein Expres Purif, 2007, 56(1):100-109.
  • Related Articles

    [1]Kang Hongwei, Yue Kangjie, Liu Huixin, Wang Jiali, Tian Xuping. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal, 2024, 42(6): 791-799. DOI: 10.11913/PSJ.2095-0837.23391
    [2]Han Jia-Xin, Zheng Hao, Zhang Qiong, Zhong Cai-Hong. Research advances in the metabolism and regulation of carbohydrate in fruit trees[J]. Plant Science Journal, 2020, 38(1): 143-149. DOI: 10.11913/PSJ.2095-0837.2020.10143
    [3]Zu Kui-Ling, Dong Shu-Bin, Li Jian-Xia, Xu Shen-Jian, Zhao Liang-Cheng. Differentially expressed genes analysis of terpenoid biosynthesis related to aril development in Celastrus orbiculatus Thunb.[J]. Plant Science Journal, 2017, 35(2): 276-282. DOI: 10.11913/PSJ.2095-0837.2017.20276
    [4]LIANG Jia-Wen, LIU Ai-Jie, MA Bing-Xin, WANG You-Wei. Simultaneous Determination of Six Flavonoid Compounds in Lotus Leaves by High Performance Liquid Chromatography[J]. Plant Science Journal, 2015, 33(6): 861-866. DOI: 10.11913/PSJ.2095-0837.2015.60861
    [5]CHANG Jing-Ling, DENG Xiao-Li, ZHANG Jun-Xia, ZHAO Xu-Na, YANG Jian-Lei. GC-MS Analysis of Linolenic Acid and Linoleic Acid in Chinese Trichosanthes kirilowii Oil[J]. Plant Science Journal, 2009, 27(5): 564-568.
    [6]LI Miao, LOU Yi-Ceng, YANG Han, HU Jia-Xing, SU Feng-Ping. Study on the Fingerprint Chromatogram of the Compound Giant Knotweed Rhizome by High Performance Liquid Chromatography[J]. Plant Science Journal, 2009, 27(4): 446-450.
    [7]HE Ya-Ting, LI Ming, LIU Wen-Zhi, ZHANG Quan-Fa, DANG Gao-Di. Comparison of Gas Exchange Traits of 30 Plant Species in Subalpine Meadow in Foping National Reserve of Qinling Mountains[J]. Plant Science Journal, 2007, 25(5): 451-456.
    [8]MA Jin-E, JIN Ze-Xin, LI Jun-Min. Analysis of Flavonoids in Endangered Plant Sinocalycanthus chinensis Using Thin Layer Chromatography[J]. Plant Science Journal, 2007, 25(4): 366-370.
    [9]LEI An-Ping, HU Zhang-Li, WONG Yuk-Shan, TAM Fung-Yee. Bioconcentration and Metabolism of Polycyclic Aromatic Hydrocarbons (PAHs) by Algae[J]. Plant Science Journal, 2005, 23(3): 291-298.
    [10]Mei Xinguo. A LOW-PRESSURE CHROMATOGRAPHIC APPARATUS AND ITS USE IN PHYTOCHEMISTRY[J]. Plant Science Journal, 1986, 4(3): 297-302.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return