Advance Search
Chen Lu-Dan, Hu Wan, Li Dan-Qi, Cheng Dong-Mei, Zhong Ai-Wen. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China[J]. Plant Science Journal, 2019, 37(6): 731-740. DOI: 10.11913/PSJ.2095-0837.2019.60731
Citation: Chen Lu-Dan, Hu Wan, Li Dan-Qi, Cheng Dong-Mei, Zhong Ai-Wen. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China[J]. Plant Science Journal, 2019, 37(6): 731-740. DOI: 10.11913/PSJ.2095-0837.2019.60731

Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31560149).

More Information
  • Received Date: April 25, 2019
  • Revised Date: June 14, 2019
  • Available Online: October 31, 2022
  • Published Date: December 27, 2019
  • Based on data of 136 distribution points and 14 environmental factor parameters, we applied both the GARP and MaxEnt niche models to predict the suitable distribution areas of wild Nelumbo nucifera Gaertn. in China. The average AUC values under the ROC curves from the GARP and MaxEnt models were 0.861 and 0.964, respectively, indicating that the MaxEnt model had more accurate prediction results. Furthermore, the MaxEnt model results showed that the optimal distribution areas of N. nucifera were mainly located in Sichuan, Hubei, and Hunan provinces, northern Jiangxi province, and a small part of Heilongjiang, Liaoning, Zhejiang, and Guangdong provinces. The Jackknife test indicated that the main environmental factors determining the potential distribution areas of N. nucifera were vapor pressure, elevation, mean annual temperature, annual average precipitation, average temperature in the hottest season, average temperature in the coldest season, the driest monthly precipitation, the lowest temperature in the coldest month, and the highest temperature in the hottest month. Statistical analysis of the environmental factors related to the potential distribution demonstrated that the most appropriate habitat conditions for N. nucifera were an elevation of 1-2216 m, high annual average precipitation (1202.50 mm), mean annual temperature of 16.19℃, average temperature in the hottest month from 24.60℃ to 35.10℃, and mean tolerated temperature in the coldest month of -0.53℃. These results will provide a favorable basis for the effective conservation of wild resources of N. nucifera in China.
  • [1]
    Melzer A. Aquatic macrophytes as tools for lake management[M]//Harper DAT, Brierley B, Ferguson AJD, Phillips G, eds. The Ecological Bases for Lake and Reservoir Management. Dordrecht:Springer, 1999.
    [2]
    Sand JK, Riis T, Vestergaard O, Larsen SE. Macrophyte decline in Danish lakes and streams over the past 100 years[J]. J Ecol, 2000, 88(6):1030-1040.
    [3]
    Körner S. Loss of submerged macrophytes in shallow lakes in North-Eastern Germany[J]. Int Rev Hydrobiol, 2002, 87(4):375-384.
    [4]
    Phillips G, Willby N, Moss B. Submerged macrophyte decline in shallow lakes:what have we learnt in the last forty years?[J]. Aquat Bot, 2016, 135:37-45.
    [5]
    Short FT, Kosten S, Morgan PA, Malone S, Moore GE. Impacts of climate change on submerged and emergent wetland plants[J]. Aquat Bot, 2016, 135:3-17.
    [6]
    Carpenter SR, Lodge DM. Effects of submersed macrophytes on ecosystem processes[J]. Aquat Bot, 1986, 26:341-370.
    [7]
    Bakker ES, Sarneel JM, Gulati RD, Liu Z, Van DE. Restoring macrophyte diversity in shallow temperate lakes:biotic versus abiotic constraints[J]. Hydrobiologia, 2013, 710(1):23-37.
    [8]
    Valk VDAG. Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline[J]. Vegetatio, 1994, 110(2):185-196.
    [9]
    Havens KE, Fox D, Gornak S, Hanlon C. Aquatic vegetation and largemouth bass population responses to water-level variations in lake Okeechobee, Florida (USA)[J]. Hydrobiologia, 2005, 539(1):225-237.
    [10]
    Thuiller W, Araujo MB, Lavorel S. Do we need land-cover data to model species distributions in Europe?[J]. J Biogeogr, 2004, 31(3):353-361.
    [11]
    Luoto M, Virkkala R, Heikkinen RK. The role of land cover in bioclimatic models depends on spatial resolution[J]. Global Ecol Biogeogr, 2007, 16(1):34-42.
    [12]
    吴征镒, 孙航, 周浙昆, 彭华, 李德铢. 中国植物区系中的特有性及其起源和分化[J]. 云南植物研究, 2005, 27(6):577-601.

    Wu ZY, Sun H, Zhou ZK, Peng H, Li DZ.Origin and differentiation of endemism in the flora of China[J]. Acta Botanica Yunnanica, 2005, 27(6):577-601.
    [13]
    薛建华, 卓丽环, 周世良. 黑龙江野生莲遗传多样性及其地理式样[J]. 科学通报, 2006, 51(3):299-308.

    Xue JH, Zhuo LH, Zhou SL. Genetic diversity of wild lotus in Heilongjiang and its geographical pattern[J]. Chinese Science Bulletin, 2006, 51(3):299-308.
    [14]
    瞿桢, 魏英辉, 李大威, 肖丽舟, 徐金星, 等. 莲品种资源的SRAP遗传多样性分析[J]. 氨基酸和生物资源, 2008, 30(3):21-25.

    Qu Z, Wei YH, Li DW, Xiao LZ, Xu JX, et al. Genetic diversity analysis of Nelumbo nucifera based on SRAP markers[J]. Amino Acids and Biotic Resources, 2008, 30(3):21-25.
    [15]
    欧阳冬梅, 刘凰, 徐金星, 刘春华, 邹东旺, 等. 基于SRAP标记的莲种质资源遗传多样性分析[J]. 长江蔬菜, 2012(16):35-38.

    Ouyang DM, Liu H, Xu JX, Liu CH, Zou DW, et al. Genetic diversity analysis of Nelumbo accessions based on SRAP markers[J]. Journal of Changjiang Vegetables, 2012(16):35-38.
    [16]
    王硕. 莲的杂交育种及杂交F1代的遗传分析[D]. 哈尔滨:东北林业大学, 2013.
    [17]
    谢克强, 张香莲, 杨良波, 徐金星, 苏颖, 张涛. 太空搭载结合离子注入进行白莲诱变育种的研究[J]. 核农学报, 2004, 18(4):303-306.

    Xie KQ, Zhang XL, Yang LB, Xu JX, Su Y, Zhang T. Effects of ion implantation on lotus seeds from space mutation[J]. Journal of Nuclear Agricultural Sciences, 2004, 18(4):303-306.
    [18]
    王玲, 王硕, 薛建华, 周世良. 中国野生莲莲子的形态变异[J]. 河北农业大学学报, 2013, 36(1):16-20.

    Wang L, Wang S, Xue JH, Zhou SL. Morphological variations of wild lotus fruits in China[J]. Journal of Agricultural University of Hebei, 2013, 36(1):16-20.
    [19]
    Fleishman E, Nally RM, Fay JP, Murphy DD. Modeling and predicting species occurrence using broad-scale environmental variables:an example with butterflies of the Great Basin[J]. Conserv Biol, 2001, 15(6):1674-1685.
    [20]
    Peterson AT, Vieglais DA. Predicting species invasions using ecological niche modeling:new approaches from bioinformatics attack a pressing problem[J]. BioScience, 2001, 51(5):363-371.
    [21]
    Scott JM, Heglund PJ, Wall WA, Morrison ML. Predicting Species Occurrences:Issues of Accuracy and Scale[M]. Washington:Island Press, 2002.
    [22]
    张东方, 张琴, 郭杰, 孙成忠, 吴杰, 等. 基于MaxEnt模型的当归全球生态适宜区和生态特征研究[J]. 生态学报, 2017, 37(15):5111-5120.

    Zhang DF, Zhang Q, Guo J, Sun ZC, Wu J, et al. Research on the global ecological suitability and characteristics of regions with Angelica sinensis based on the MaxEnt model[J]. Acta Ecologica Sinica, 2017, 37(15):5111-5120.
    [23]
    朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Bu WJ, Gao YB.Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
    [24]
    Kulhanek SA, Leung B, Ricciardi A. Using ecological niche models to predict the abundance and impact of invasive species:application to the common carp[J]. Ecol Appl, 2011, 21(1):203-213.
    [25]
    Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006, 29(2):129-151.
    [26]
    Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3-4):231-259.
    [27]
    Stockwell D. The GARP modelling system:problems and solutions to automated spatial prediction[J]. Int J Geogr Inf Sci, 1999, 13(2):143-158.
    [28]
    Higgins SI, Richardson DM, Cowling RM. Modeling invasive plant spread:the role of plant-environment interactions and model structure[J]. Ecology, 1996, 77(7):2043-2054.
    [29]
    Proosdij VASJ, Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models[J]. Ecography, 2016, 39(6):542-552.
    [30]
    Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological-niche factor analysis:how to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7):2027-2036.
    [31]
    Luoto M, Heikkinen RK, Pöyry J, Saarinen K. Determinants of the biogeographical distribution of butterflies in boreal regions[J]. J Biogeogr, 2006, 33(10):1764-1778.
    [32]
    Dorji S, Vernes K, Rajaratnam R. Habitat correlates of the red panda in the temperate forests of Bhutan[J]. PLoS One, 2011, 6(10):e26483.
    [33]
    Owens HL, Bentley AC, Peterson AT. Predicting suitable environments and potential occurrences for coelacanths (Latimeria spp.)[J]. Biodivers Conserv, 2012, 21(2):577-587.
    [34]
    Heikkinen R, Leikola N, Fronzek S, Toivonen H. Predicting distribution patterns and recent northward range shift of an invasive aquatic plant:Elodea canadensis in Europe[J]. BioRisk, 2009, 2:1-32.
    [35]
    陈璐, 孙希华, 林泽民. 基于GARP的大薸潜在适生区预测[J]. 安徽农业科学, 2015, 43(2):243-245.

    Chen L, Sun XH, Lin ZM. GARP-based prediction of potential distribution of Pistia stratiotes L. in China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(2):243-245.
    [36]
    陈立立, 余岩, 何兴金. 喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测[J]. 生物多样性, 2008, 16(6):578-585.

    Chen LL, Yu Y, He XJ. Historical invasion and expansion process of Alternanthera philoxeroides and its potential spread in China[J]. Biodiversity Science, 2008, 16(6):578-585.
    [37]
    Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, et al. Niche breadth and geographic range size as determinants of species survival on geological time scales[J]. Global Ecol Biogeogr, 2015, 24(10):1159-1169.
    [38]
    薛建华, 卓丽环, 郭玉民, 苏含英. 黑龙江省野生莲资源的现状及保护[J]. 哈尔滨师范大学自然科学学报, 2005, 21(2):87-91.

    Xue JH, Zhuo LH, Guo YM, Su HY. The situation and protection of wild-lotus resource on Heilongjiang province[J]. Natural Science Journal of Harbin Normal University, 2005, 21(2):87-91.
    [39]
    李静. 黑龙江省野生莲的分布及应用[J]. 黑龙江农业科学, 2009(1):81-83.

    Li J. Distribution and application of wild-lotus resource in Heilongjiang province[J]. Heilongjiang Agricultural Sciences, 2009(1):81-83.
    [40]
    王瑞. 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测[D]. 北京:中国科学院植物研究所, 2006.
    [41]
    Wang R, Wang YZ. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Divers Distrib, 2006, 12(4):397-408.
    [42]
    王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.

    Wang YS, Xie BY, Wang FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
    [43]
    Engler R, Guisan A, Rechsteiner L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data[J]. J Appl Ecol, 2004, 41(2):263-274.
    [44]
    Carnaval AC, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest[J]. J Biogeogr, 2008, 35(7):1187-1201.
    [45]
    Escobar LE, Awan MN, Qiao H. Anthropogenic distur-bance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus):Using ecological niche modeling and nighttime light satellite imagery[J]. Biol Conserv, 2015, 191:400-407.
    [46]
    郑卉, 何兴金. 苋属4种外来有害杂草在中国的适生区预测[J]. 植物保护, 2011, 37(2):81-86.

    Zheng H, He XJ. Prediction of potential distribution of four alien invasive Amaranthus weeds in China[J]. Plant Protection, 2011, 37(2):81-86.
    [47]
    Working groupⅡ contribution to the fourth assessment report of the IPCC. Climate change 2007-impacts, adaptation and vulnerability[R]. Cambridge, 2007.
    [48]
    薛建华, Kryukova MV, Rubtsova TA, Pshennikova LM, Bolotova YV. 走近黑龙江流域野生莲[J]. 生命世界, 2015(6):4-16.

    Xue JH, Kryukova MV, Rubtsova TA, Pshennikova LM, Bolotova YV. Approaching the wild lotus in the Heilongjiang River Basin[J]. Life World, 2015(6):4-16.
    [49]
    Matthews WJ. Patterns in Freshwater Fish Ecology[M]. Boston:Springer, 1998.
    [50]
    Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations[J]. J Environ Qual, 2009, 38(5):1930-1941.
    [51]
    李宏群, 李宇轩, 刘晓莉, 丁世敏, 张倩倩, 等. 基于Maxent生态位模型的水葫芦在中国的适生区预测[J]. 生态科学, 2018, 37(3):143-147.

    Li HQ, Li YX, Liu XL, Ding SM, Zhang QQ, et al. Prediction of potential distribution for water hyacinth in China by using Maxent ecologic niche model[J]. Ecological Science, 2018, 37(3):143-147.
    [52]
    薛建华, 曹晓青, Kryukova MV, Rubtsova TA. 黑龙江流域野生莲及其生物学特性[J]. 国土与自然资源研究, 2010(5):66-68.

    Xue JH, Cao XQ, Kryukova MV, Rubtsova TA. Wild lotus in the Heilongjiang river valley and its biological characte-ristics[J]. Territory and Natural Resources Study, 2010(5):66-68.
  • Related Articles

    [1]Zeng Weiying, Wang Dezhi, Ye Chen, Gong Yu, Wang Yuxi, Zhang Quanfa. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling[J]. Plant Science Journal, 2025, 43(1): 52-62. DOI: 10.11913/PSJ.2095-0837.24033
    [2]Li Dan-Qi, Hu Wan, Han Cai-Xia, Chen Lu-Dan, Zhang Zhi-Yong, Zhong Ai-Wen, Wei Zong-Xian, Peng Yan-Song. Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model[J]. Plant Science Journal, 2020, 38(6): 743-750. DOI: 10.11913/PSJ.2095-0837.2020.60743
    [3]Zhou Ya-Dong, Mwangi Brian Njoroge, Ndungu John Mbari, Wang Sheng-Wei, Hu Guang-Wan, Wang Qing-Feng. Simulating potential distribution of Afrocanthium (Rubiaceae) in Kenya based on MaxEnt and its application in the Flora of Kenya[J]. Plant Science Journal, 2020, 38(5): 636-643. DOI: 10.11913/PSJ.2095-0837.2020.50636
    [4]Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337
    [5]Yang Fu-Rong, Zhang Qin, Sun Cheng-Zhong, Xie Cai-Xiang, Song Jing-Yuan. Comparative evaluation of multiple models for predicting the potential distribution areas of Astragalus membranaceus var. mongholicus[J]. Plant Science Journal, 2019, 37(2): 136-143. DOI: 10.11913/PSJ.2095-0837.2019.20136
    [6]Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang Zhong-Xin. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
    [7]WEN Jian, SONG Jing-Yuan, XIE Cai-Xiang, ZHANG Qin, ZENG Fan-Lin, ZHANG Yi. Identification of Potential Distribution Areas for Energy Plant Jatropha curcas L. Using the Maxent Entropy Model[J]. Plant Science Journal, 2016, 34(6): 849-856. DOI: 10.11913/PSJ.2095-0837.2016.60849
    [8]KONG Ling-Jie, PENG De-Zhen, LI Bo, YANG Bo-Yun, HE Ji-Li, FAN Zhi-Gang, ZHANG Zi-Bin, LIANG Yao-Long. Orchid Resource Distribution and Characteristics in Jiulianshan Nature Reserve[J]. Plant Science Journal, 2010, 28(5): 554-560.
    [9]Huang Hongwen. REVIEW OF CURRENT RESEARCH OF THE WORLD CASTANEA SPECIES AND IMPORTANCE OF GERMPLASM CONSERVATION OF CHINA NATIVE CASTANEA SPECIES[J]. Plant Science Journal, 1998, 16(2): 171-176.
    [10]Zhong Yi. THE SUCCESSION AND PROTECTION OF PLANT RESOURCES OF HAINAN ISLAND[J]. Plant Science Journal, 1983, 1(1): 101-110.
  • Cited by

    Periodical cited type(26)

    1. 高健,刘宏宇,李雅琴,黄磊,赵鹏. 基于MaxEnt模型的濒危物种五小叶槭潜在适生区预测. 西北林学院学报. 2025(03): 219-224+232 .
    2. 郑亚娇,张沈安,栾东涛,刘翔,王铖,黄清俊,许瑾. 应用最大熵模型预测多脉青冈在不同时期的潜在分布. 东北林业大学学报. 2024(03): 76-81 .
    3. 舒骏生,楚春晖,彭玺,张亚威,张晓晨,卓玛曲珍,米玛次仁. 基于MaxEnt模型预测西藏红豆杉在西藏的潜在适宜分布区. 中南林业调查规划. 2024(01): 27-32 .
    4. 赵彩云,陆双飞,李荣亮,殷晓洁,滕皎,高伟杰,王妍. 气候变化下西南地区主要亚热带常绿栎属乔木地理分布研究. 热带亚热带植物学报. 2024(03): 357-366 .
    5. 黄安玲,姜金香,任志琴,胡优琼,王志威. 基于MaxEnt模型的玉竹潜在适生区及关键生态因子分析. 中国实验方剂学杂志. 2024(18): 178-185 .
    6. 查苏娜,琪波热,胡红霞,阿拉坦存布尔,永鲜,奥乌力吉,包金花,曹乌吉斯古楞. 气候变化背景下濒危药用植物手参在中国潜在适生区预测. 应用生态学报. 2024(11): 3023-3030 .
    7. 陈博,曹后康,郭延秀,席少阳,吕蓉,晋玲. 中药南沙参生态适宜性区划研究. 中国中医药信息杂志. 2023(03): 1-6 .
    8. 李慧,滕皎,殷晓洁,李干,陈智,王妍. 不同气候环境的中国珍稀濒危樟属乔木适生分布区模拟预测. 东北林业大学学报. 2023(02): 43-53 .
    9. 舒骏生,彭玺,张晓晨,陈昕. 基于MaxEnt模型的油麦吊云杉西藏潜在适生区预测. 西北林学院学报. 2023(01): 66-72 .
    10. 邓昶,郝杰威,高德,任明迅,张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护. 生物多样性. 2023(04): 62-75 .
    11. 徐慧,佟珂珂,姚霞珍,邢震. 基于MaxEnt模型的濒危植物大花黄牡丹潜在适生区预测. 高原农业. 2023(03): 278-290 .
    12. 王浩东,袁丛军,杨瑞,赵宏玖,马觉兵,郭家瑞,戴晓勇,丁访军. 基于MaxEnt模型的贵州特有植物普定杜鹃花潜在适生区预测. 南方农业学报. 2023(03): 938-947 .
    13. 黎肇家,方发之,吴二焕,桂慧颖,吴钟亲,徐建辉,罗湘粤. 海南热带雨林国家公园珍稀濒危观赏植物园林应用筛选. 热带林业. 2023(03): 16-22 .
    14. 朱满乐,韦宝婧,胡希军,吴家荣,李芮芝,任哲民. 基于MaxEnt模型的濒危植物丹霞梧桐潜在适生区预测. 生态科学. 2022(05): 55-62 .
    15. 施茂寅,陈银霞,陈齐通,李欢,谢宜飞,邱相东,张桧. 珍稀保护植物江西杜鹃分布区模拟分析. 南方林业科学. 2022(06): 31-34+49 .
    16. 古丽米拉·克孜尔别克,邱琴,海拉提·克孜尔别克. 基于MaxEnt模型的阿勒泰金莲花潜在适生区预测. 江苏农业科学. 2021(04): 82-87 .
    17. 赵光华,樊保国. 末次间冰期以来濒危植物藤枣适生区空间迁移预测. 西南农业学报. 2021(01): 174-182+229 .
    18. 穆喜云,乌志颜,李显玉,王芳,白晓旭,郭淑文,程瑞春,于胜利. 基于最大熵模型的赤峰市华北落叶松人工林适宜分布区估测. 干旱区资源与环境. 2021(06): 144-152 .
    19. 罗广令,顾丽,廖海民,胡国雄. 唇形科苣叶鼠尾草的新分布及适生分布区预测. 西北植物学报. 2021(03): 501-508 .
    20. 唐燕,赵儒楠,任钢,曹福亮,祝遵凌. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析. 北京林业大学学报. 2021(06): 23-32 .
    21. 陈博,曹后康,吕蓉,王莉,成希,晋玲. 基于MaxEnt和ArcGIS的中药车前子生态适宜性区划研究. 中国中医药信息杂志. 2021(11): 1-6 .
    22. 佘延娣,周华坤,张中华,马丽,周秉荣,宋明华,孙建,邓艳芳,徐文华,王芳,姚步青,马真,黄小涛. 气候变化背景下羌活在三江源的适宜分布. 生态环境学报. 2021(10): 2033-2041 .
    23. 谢春平,吴显坤,薛晓明,南程慧,刘大伟. 浙江楠适生区与气候环境关系的分析. 四川农业大学学报. 2020(03): 264-271 .
    24. 段义忠,王驰,王海涛,杜忠毓,贺一鸣,柴乖强. 不同气候条件下沙冬青属植物在我国的潜在分部——基于生态位模型预测. 生态学报. 2020(21): 7668-7680 .
    25. 张晨星,张炜,徐晶晶,杨新兵. 基于GIS和最大熵模型的河北省油松适宜性分布分析. 地理与地理信息科学. 2020(06): 18-25 .
    26. 李单琦,胡菀,韩彩霞,陈陆丹,张志勇,钟爱文,魏宗贤,彭焱松. 基于MaxEnt模型的濒危观赏植物福建柏潜在适生区预测. 植物科学学报. 2020(06): 743-750 . 本站查看

    Other cited types(9)

Catalog

    Article views (1106) PDF downloads (595) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return