Advance Search
Xi Lian-Lian, Li Jia-Bao, Zhu Kai-Lin, Qi Qi, Chen Xin. Variation in genome size and stomatal traits among three Sorbus species[J]. Plant Science Journal, 2020, 38(1): 32-38. DOI: 10.11913/PSJ.2095-0837.2020.10032
Citation: Xi Lian-Lian, Li Jia-Bao, Zhu Kai-Lin, Qi Qi, Chen Xin. Variation in genome size and stomatal traits among three Sorbus species[J]. Plant Science Journal, 2020, 38(1): 32-38. DOI: 10.11913/PSJ.2095-0837.2020.10032

Variation in genome size and stomatal traits among three Sorbus species

Funds: 

This work was supported by a grant from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

More Information
  • Received Date: June 22, 2019
  • Revised Date: September 18, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • In this paper, ploidy in Sorbus cibagouensis H. Peng & Z. J. Yin, S. hypoglauca (Cardot) Hand.-Mazz., and S. vilmorinii C. K. Schneid was assessed by means of relative genome size using flow cytometry. At the same time, stomatal characteristics were observed by light microscopy and scanning electron microscopy. Based on flow cytometry profiles, the genome sizes of S. cibagouensis, S. hypoglauca, and S. vilmorinii were (1.480±0.039) pg, (1.513±0.041) pg, and (2.675±0.065) pg respectively. The cytotypes of S. cibagouensis (2x), S. hypoglauca (2x), and S. vilmorinii (4x) were also revealed. The stomata of the three Sorbus species did not sink and the guard cells had no ‘T’ type thickening structure. Furthermore, the stomata were distributed in the lower epidermis of the leaves and were anomocytic type. The outer stomatal rim ornamentation of S. cibagouensis and S. vilmorinii was smooth, whereas that of S. hypoglauca was short rod waxy. These results showed that there were significant differences in stomatal size among the three Sorbus species. Furthermore, genome size was positively associated with the ploidy of Sorbus, which could therefore be used for ploidy identification. Although the correlation between stomatal traits and ploidy was not significant, the stomatal characteristics changed significantly among species, which could provide a theoretical basis for species identification.
  • [1]
    俞德浚, 陆玲娣. 中国植物志:第36卷:花楸属Sorbus L.[M]. 北京:科学出版社, 1974.
    [2]
    魏杰, 石佳, 侯潇, 鞠政楠. 欧洲花楸的化学成分及药理作用研究进展[J]. 辽宁大学学报(自然科学版), 2014, 41(4):362-368.

    Wei J, Shi J, Hou X, Ju ZN. Research progress of chemical components and pharmacological activities in Sorbus aucuparia[J]. Journal of Liaoning University (Natural Sciences Edition), 2014, 41(4):362-368.
    [3]
    Aldasoro JJ, Aedo C, Navarro C, Garmendia FM. The genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa:Morphological analysis and systematics[J]. Syst Bot, 1998, 23(2):189-212.
    [4]
    Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, et al. Hybridization and polyploidy as drivers of conti-nuing evolution and speciation in Sorbus[J]. Mol Ecol, 2010, 19(8):1675-1690.
    [5]
    Hamston TJ, de Vere N, King RA, Pellicer J, Fay MF, et al. Apomixis and hybridization drives reticulate evolution and phyletic differentiation in Sorbus L.:implications for conservation[J]. Front Plant Sci, 2018, 9:1796.
    [6]
    Lu LT, Spongberg SA. Sorbus Linnaeus[M]//Wu ZY, Raven PH, Hong DY, eds. Flora of China:Vol 9. Beijing:Science Press, 2003.
    [7]
    Phipps JB, Robertson KR, Smith PG, Rohrer JR. A checklist of the subfamily Maloideae (Rosaceae)[J]. Can J Bot, 1990, 68(10):2209-2269.
    [8]
    Sennikov AN, Kurtto A. A phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe[M/OL]//Memoranda Soc. Fauna Flora Fennica:Vol. 93. Helsinki, 2017:1-78[2019-06-13].https://journal.fi/msff/issue/view/4564.
    [9]
    Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry[J]. Nat Protoc, 2007, 2(9):2233-2244.
    [10]
    Leitch AR, Leitch IJ. Ecological and genetic factors linked to contrasting genome dynamics in seed plants[J]. New Phytol, 2012, 194(3):629-646.
    [11]
    Roberts AV, Gladis T, Brumme H. DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels[J]. Plant Cell Rep, 2009, 28(1):61-71.
    [12]
    Rothleutner JJ, Friddle MW, Contreras RN. Ploidy levels, relative genome sizes, and base pair composition in Cotoneaster[J]. J Amer Soc Hort Sci, 2016, 141(5):457-466.
    [13]
    Pellicer J, Clermont S, Houston L, Rich TCG, Fay MF. Cytotype diversity in the Sorbus complex (Rosaceae) in Britain:sorting out the puzzle[J]. Ann Bot, 2012, 110(6):1185-1193.
    [14]
    Hajrudinović A, Frajman B, Sch nswetter P, Silajdžić E, Siljak-Yakovlev S, et al. Towards a better understanding of polyploid Sorbus (Rosaceae) from Bosnia and Herzegovina (Balkan Peninsula), including description of a novel, tetraploid apomictic species[J]. Bot J Linn Soc, 2015, 178(4):670-685.
    [15]
    Uhrinová V, Zozomová-Lihová J, Bernátová D, Paule J, Paule L, et al. Origin and genetic differentiation of pink-flowered Sorbus hybrids in the western Carpathians[J]. Ann Bot, 2017, 120(2):271-284.
    [16]
    Podwyszyńska M, Kruczyńska D, Machlańska A, Dyki B, Sowik I. Nuclear DNA content and ploidy level of apple cultivars including polish ones in relation to some morphological traits[J]. Acta Biol Cracov Ser Bot, 2016, 58(1):81-93.
    [17]
    Caiza JC, Vargas D, Olmedo C, Arboleda M, Boada L, et al. Measurement of stomata and pollen as an indirect indicator of polyploidy in the genus Polylepis (Rosaceae) in Ecuador[J]. Ecología Austral, 2018, 28:175-187.
    [18]
    Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, et al. Stomatal vs. genome size in angiosperms:the somatic tail wagging the genomic dog?[J]. Ann Bot, 2010, 105(4):573-584.
    [19]
    Kong MJ, Pyohong SP. Leaf micromorphology of the Persicaria sect. Cephalophilon (Polygonaceae) and its systematic re-evaluation[J]. Phytaxa, 2019, 391(3):167-184.
    [20]
    秦燕, 王跃华, 孙卫邦, 陈高. 百部科植物叶表皮特征及其分类学意义[J]. 植物科学学报, 2018, 36(4):487-500.

    Qin Y, Wang YH, Sun WB, Chen G. Characters of the leaf epidermis of Stemonaceae and their taxonomical significance[J]. Plant Science Journal, 2018, 36(4):487-500.
    [21]
    Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, et al. Repetitive sequences:cause for variation in genome size and chromosome morphology in the genus Oryza[J]. Plant Mol Biol, 1997, 35(6):791-799.
    [22]
    Loureiro J, Rodriguez E, Dolezel J, Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry:a test with 37 species[J]. Ann Bot, 2007, 100(4):875-888.
    [23]
    王宇飞, 陶君容. 植物角质层分析术语新体系[J]. 植物学通报, 1991, 8(4):6-13.

    Wang YF, Tao JR. An introduction to a new system of terminology for plant cuticular analysis[J]. Chinese Bulletin of Botany, 1991, 8(4):6-13.
    [24]
    Ludwig S, Robertson A, Rich TCG, Djordjević M, Cerović R, et al. Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus[J]. Ann Bot, 2013, 111(4):563-575.
    [25]
    Nelson-Jones EB, Briggs D, Smith AG. The origin of intermediate species of the genus Sorbus[J]. Theor Appl Genet, 2002, 105(6-7):953-963.
    [26]
    Bailey JP, Kay QON, McAllister H, Rich TCG. Chromosome numbers in Sorbus L. (Rosaceae) in the British Isles[J]. Watsonia, 2008, 27(1):69-72.
    [27]
    H fer M, Meister A. Genome size variation in Malus species[J/OL]. Journal of Botany, 2010(2010-05-01)[2019-06-13]. DOI: 10.1155/2010/480873.
    [28]
    Frajman B, Resětnick I, Weiss-Schneeweiss H, Ehrendorfer F, Sch nswetter P. Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae)[J]. BMC Evol Biol, 2015, 15(1):140.
    [29]
    Talent N, Dickinson TA. Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae):evolutionary infe-rences from flow cytometry of nuclear DNA amounts[J]. Can J Bot, 2005, 83(83):1268-1304.
    [30]
    巢阳, 周燕. 通过测量叶片气孔鉴定月季染色体倍性的研究[J]. 北京农学报, 2015, 30(3):79-85.

    Chao Y, Zhou Y. Study on the identification of rose ploidy level through measuring leaf stomata[J]. Journal of Beijing University of Agriculture, 2015, 30(3):79-85.
    [31]
    Zlesak DC. Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines[J]. Floriculture and Ornamental Biotechno-logy, 2009, 3(1):53-70.
    [32]
    Čaňová I,Ďurkovič J, Hladká D, Lukáčik I. Changes in stomatal characteristics and photochemical efficiency during leaf development in six species of Sorbus[J]. Photosynthetica, 2012, 50(4):635-640.
    [33]
    张凌媛, 郭启高, 李晓林, 曾洪, 谭健民, 梁国鲁. 枇杷气孔保卫细胞叶绿体数目与倍性相关性研究[J]. 果树学报, 2005, 22(3):229-233.

    Zhang LY, Guo QG, Li Xl, Zeng H, Tan JM, Liang GL. Study on the relationship between the number of chloroplast in stomata guard cell and the ploidy of loguat cultivars[J]. Journal of Fruit Science. 2005, 22(3):229-233.
    [34]
    Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ. Environmental adaptation in stomatal size independent of the effects of genome size[J]. New Phytol, 2015, 205(2):608-617.
    [35]
    单提波, 赵明辉, 武静莲, 徐正进. 不同气孔密度水稻的光合特征及Rubisco酶活性研究[J]. 核农学报, 2015, 29(6):1142-1148.

    Shan TB, Zhao MH, Wu JL, Xu ZJ. Study on photosynthetic characteristics and Rubisco activity of rice leaves with different stomatal densities[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(6):1142-1148.
  • Related Articles

    [1]Song Shuaishuai, Wu Hao, Lü Linyu, Xiao Zhiqiang, Yang Teng, Shi Hongwen, Wei Xinzeng. Geographic patterns of leaf functional traits and environmental drivers of national key protected wild plant Davidia involucrata Baillon[J]. Plant Science Journal, 2024, 42(2): 160-169. DOI: 10.11913/PSJ.2095-0837.23112
    [2]Chen Xu-Bo, Zhang Yu-Xi, Zhang Ya-Fen, Luo Zheng-Rong. Response of phenotypic plasticity of invasive Ageratum conyzoides L. to interspecific competition[J]. Plant Science Journal, 2023, 41(1): 37-43. DOI: 10.11913/PSJ.2095-0837.22099
    [3]DAI Can, QIN Dao-Feng, LUO Wen-Jie. Ecological and Evolutionary Studies on Sagittaria (Alismataceae)[J]. Plant Science Journal, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620
    [4]GAO Le-Xuan. Comparisons of Morphological Variation and Cellular Osmotic Potential Adjustment between Invasive Species Alternanthera philoxeroides and its Native Congener A. sessilis under Different Water Treatments[J]. Plant Science Journal, 2015, 33(2): 195-202. DOI: 10.11913/PSJ.2095-0837.2015.20195
    [5]DENG Ying, GAO Le-Xuan, ZHU Zhu, YANG Ji. Differential Expression of DNA Methylation Regulating Factors and Dynamic Methylation Patterns of Alternanthera philoxeroides under Different Water Treatments[J]. Plant Science Journal, 2014, 32(5): 475-486. DOI: 10.11913/PSJ.2095-0837.2014.50475
    [6]LIAO Ling-Juan, LI-Qing, CHEN Yi-Zhu, LIN Jun-Xin, WU Lin-Fang, CAO Hong-Lin. Effects of Environmental Disturbance on Leaf Morphological Traits, Stomata, and Water Use Efficiency of Species for Afforestation on a Windward Slope in a Coastal Zone[J]. Plant Science Journal, 2011, 1(5): 613-624.
    [7]HU Ying, CHU Hai-Jia, LI Jian-Qiang. Response of Leaf Anatomy Characteristics and Its Plasticity to Different Soil-water Conditions of Medicago ruthenica in Four Populations[J]. Plant Science Journal, 2011, 29(2): 218-225.
    [8]SUN Xiao-Fang, REN Ming-Xun, WANG Gang, TAN Gen-Jia, HE Jia-Qing, HUANG Xun-Duan, PING Jiang, GE Jie-Lin. Photosynthetic Physiology and Clonal Growth of Solidago canadensis at Different Light Intensities:Implications for Invasive Mechanism[J]. Plant Science Journal, 2008, 26(6): 620-626.
    [9]LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567.
    [10]XU Kai-Yang, YE Wan-Hui, LI Guo-Min, LI Jing. Phenotypic Plasticity in Response to Light Intensity in the Invasive Species Alternanthera philoxeroides[J]. Plant Science Journal, 2005, 23(6): 560-563.
  • Cited by

    Periodical cited type(9)

    1. 杨奕颖,苏思霖,曹恩志,李红有,迟洪明,蔺凯,吴旭东,何文强,杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响. 中国沙漠. 2025(01): 162-172 .
    2. 杨建欣,龚买玉,马长乐,樊智丰,高灿,王李娟,邓莉兰. 大头茶属3种植物天然居群的叶表型性状特征研究. 植物科学学报. 2025(01): 21-31 . 本站查看
    3. 冯云,张韫,范少辉,刘广路,魏松坡. 12种竹子的叶表型变异及其与环境因子的关系. 西北林学院学报. 2024(01): 147-153 .
    4. 马凡强,简尊吉,郭泉水,秦爱丽,梁洪海,杨永明. 长期水陆周期性变化条件下香根草形态性状和生物量分配的可塑性. 生态学报. 2023(02): 672-680 .
    5. 吴天彧,杨依康,周帅,张清舒,罗建. 色季拉山不同海拔梯度下三花杜鹃叶表型性状变异研究. 高原农业. 2022(01): 41-48 .
    6. 袁娅娟,白小明,朱雅楠,张毓婧,闫玉邦,张才忠,李玉杰. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报(中英文). 2021(08): 1359-1369 .
    7. 牛雪婧,聂靖,杨自云,赵雪利. 河北木蓝叶表型对干旱胁迫的响应. 西北植物学报. 2020(04): 613-623 .
    8. 刘涛,吕婷,刘玉萍,梁瑞芳,陈志,苏旭. 青藏高原特有属——固沙草属表型变异及其对环境因子的响应. 西北植物学报. 2020(07): 1219-1229 .
    9. 艾喆,徐婷婷,周兆娜,马飞. 小叶锦鸡儿天然居群叶形态性状变异研究. 西北植物学报. 2020(09): 1595-1604 .

    Other cited types(5)

Catalog

    Article views (861) PDF downloads (904) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return