Advance Search
Wagutu Godfrey Kinyori, Njeri Henry Kariuki, Fan Xiang-Rong, Chen Yuan-Yuan. Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)[J]. Plant Science Journal, 2020, 38(1): 105-111. DOI: 10.11913/PSJ.2095-0837.2020.10105
Citation: Wagutu Godfrey Kinyori, Njeri Henry Kariuki, Fan Xiang-Rong, Chen Yuan-Yuan. Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)[J]. Plant Science Journal, 2020, 38(1): 105-111. DOI: 10.11913/PSJ.2095-0837.2020.10105

Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)

Funds: 

This work was supported by a grant from the Talent Program of Wuhan Botanical Garden, Chinese Academy of Sciences (Y855291B01).

More Information
  • Received Date: April 01, 2019
  • Revised Date: June 14, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Zizania latifolia Turcz., also known as Manchurian wild rice, is a member of the tribe Oryzeae, and a major wild ecological and genetic resource. In this study, nuclear SSR primers were developed in silico based on part of the existing genome sequences of Z. latifolia. Five wild populations of the species from different regions across China were selected to screen 64 developed primers. Results showed that 15 primer pairs were polymorphic in at least one population. In addition, we identified a total of 84 alleles, with an average of 5.6 alleles per locus. For the different populations, the level of observed and expected heterozygosity ranged from 0.000 to 0.941 and 0.072 to 0.625, respectively. Relatively high genetic differentiation between populations (FST=0.432) was found, as evidenced by low levels of gene flow (Nm=0.576) among populations. These newly developed markers will facilitate further study of the level and pattern of genetic diversity, and the development of germplasm resource conservation strategies for natural extant Z. latifolia populations. In the cross-species transferability test, eight and nine of the 15 loci were successfully amplified in Oryza sativa L. and O. rufipogon Griff., respectively.
  • [1]
    Chen Y, Long L, Lin X, Guo W, Liu B. Isolation and characterization of a set of disease resistance-gene analogs (RGAs) from wild rice, Zizania latifolia Griseb. I. Introgression, copy number lability, sequence change, and DNA methylation alteration in several rice-Zizania introgression lines[J]. Genome, 2006, 49(2):150-158.
    [2]
    Terrell E, Peterson P, Reveal J, Duvall M. Taxonomy of North American species of Zizania (Poaceae)[J]. Sida, 1997, 17:533-549.
    [3]
    Xu X, Walters C, Antolin MF, Alexander ML, Lutz S, et al. Phylogeny and biogeography of the eastern Asian-North American disjunct wild-rice genus (Zizania L., Poaceae)[J]. Mol Phylogenet Evol, 2010, 55(3):1008-1017.
    [4]
    Peng SL, You WH, Qi G, Yang FL. Nitrogen and phosphorus uptake capacity and resource use of aquatic vegetables floating bed in the eutrophicated lake[C/OL]//2013 Third International Conference on Intelligent System Design and Engineering Applications. (2013-01-01)[2019-09-05]. DOI: 10.1109/ISDEA.2012.237.
    [5]
    Chen YY, Liu Y, Fan XR, Li W, Liu YL. Landscape-scale genetic structure of wild rice Zizania latifolia:The roles of rivers, mountains and fragmentation[J]. Front Ecol Evol, 2017, 5:17.
    [6]
    Guo HB, Li SM, Peng J, Ke WD. Zizania latifolia Turcz. cultivated in China[J]. Genet Resour Crop Evol, 2007, 54(6):1211-1217.
    [7]
    Chen YY, Chu HJ, Liu H, Liu YL. Abundant genetic diversity of the wild rice Zizania latifolia in central China revealed by microsatellites[J]. Ann Appl Biol, 2012, 161(2):192-201.
    [8]
    Wang HM, Wu GL, Jiang SL, Huang QN, Feng BH, et al. Genetic diversity of Zizania latifolia Griseb. from Poyang lake basin based on SSR and ISSR analysis[J]. J Plant Genet Resour, 2015, 16(1):133-141.
    [9]
    Fan XR, Ren XR, Liu YL, Chen YY. Genetic structure of wild rice Zizania latifolia and the implications for its management in the Sanjiang Plain, Northeast China[J]. Biochem Syst Ecol, 2016, 64:81-88.
    [10]
    Zhao Y, Zhong L, Zhou K, Song Z, Chen J, Rong J. Seed characteristic variations and genetic structure of wild Zizania latifolia along a latitudinal gradient in China:Implications for neo-domestication as a grain crop[J]. AoB Plants, 2018, 10(6):ply072.
    [11]
    Quan Z, Pan L, Ke W, Liu Y, Ding Y. Sixteen polymorphic microsatellite markers from Zizania latifolia Turcz. (Poaceae)[J]. Mol Ecol Resour, 2009, 9(3):887-889.
    [12]
    Guo LB, Qiu J, Han ZJ, Ye ZH, Chen C, et al. A host plant genome (Zizania latifolia) after a century-long endophyte infection[J]. Plant J, 2015, 83(4):600-609.
    [13]
    Li Q, Wan JM. SSRHunter:Development of a local searching software for SSR sites(in Chinese)[J]. Hereditas, 2005, 27:808-810.
    [14]
    Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR:An in-silico tool for fast primer and probe design and advanced sequence analysis[J]. Genomics, 2017, 109(3/4):312-319.
    [15]
    Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
    [16]
    Peakall ROD, Smouse PE. GENALEX 6:Genetic analysis in Excel. Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6:288-295.
    [17]
    Goudet J. FSTAT ver 2.9.4, a program to estimate and test gene diversities and fixation indices[EB/OL]. (2005-08-23)[2019-09-05]. https://www2.unil.ch/popgen/softwares/fstat.htm.
    [18]
    Kumar S, Stecher G, Tamura, K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
    [19]
    Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species[J]. Philos Trans R Soc Lond B Biol Sci, 1996, 351(1345):1291-1298.
    [20]
    Xu XW, Ke WD, Yu XP, Wen J, Ge S. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based onAdh1a sequences[J]. Theor Appl Genet, 2008, 116(6):835-843.
    [21]
    Wright S. Evolution and the Genetics of Populations:the Theory of Gene Frequencies[M]. Illinois:University of Chicago Press, 1969.
  • Related Articles

    [1]Wang Yuqing, Zhou Shouhang, Ma Fulong, Wang Haizhen, Han Lu. Response of osmoregulatory substances and antioxidant enzyme activities in heteromorphic leaves of Populus euphratica Oliv. to groundwater depth[J]. Plant Science Journal, 2024, 42(2): 221-231. DOI: 10.11913/PSJ.2095-0837.23204
    [2]Zhen Zhao-Meng, Zhuang Xiao-Cui, Liu Ye, Chen Gui-Lin, Guo Ming-Quan. Antioxidant activities and chemical constituents of roots of Mondia whiteii (Hook. f.) Skeels[J]. Plant Science Journal, 2020, 38(4): 543-550. DOI: 10.11913/PSJ.2095-0837.2020.40543
    [3]Cai Yuan-Bao, Yang Xiang-Yan, Sun Guang-Ming, Zhang Zhi-Li, Huang Qiang, Liu Ye-Qiang, Tang Ying-Ying, Wang Yun-Ru, Li Mu. Relationship among colors, pigments, and antioxidant activities of pineapple leaves[J]. Plant Science Journal, 2017, 35(2): 283-290. DOI: 10.11913/PSJ.2095-0837.2017.20283
    [4]Xie Guo-Fang, Xu Xiao-Yan, Wang Rui, Liu Zhi-Gang, Zhou Xiao-Li, Yang Han-Tao. Analysis of phenolic, Vc and antioxidant activity of fruits and leaves of Rosa sterilis D. Shi[J]. Plant Science Journal, 2017, 35(1): 122-127. DOI: 10.11913/PSJ.2095-0837.2017.10122
    [5]WANG Hui, WANG Qi-Lin, TIAN Jiao, DANG Yue-Fang, LIU Jian-Li, LI Shan, SHANG Jiao, FANG Min-Feng. Antioxidant and Anticancer Activities of Extracts Derived from Four Kinds of Lichen[J]. Plant Science Journal, 2014, 32(2): 181-188. DOI: 10.3724/SP.J.1142.2014.20181
    [6]REN Hui, ZHOU Jing, LI Yi-Wei, WEI Chi-Zhang, LU Yu-Ying, LU Yan-Chun, LUO Rui-Hong. Study on Nutrition and Antioxidant Activities of Sterculia nobilis Smith Seeds[J]. Plant Science Journal, 2013, 31(2): 203-208. DOI: 10.3724/SP.J.1142.2013.20203
    [7]SUN Xiao-Chun, YAN Gui-Qin. Comparisons of Antioxidant Activity of the Polysaccharide from Different Parts of Elaeagnus umbellata Thunb.[J]. Plant Science Journal, 2011, 29(6): 734-737.
    [8]CHEN Tao, WANG Gui-Mei, SHEN Wei-Wei, LI Xiao-Zhen, QI Jian-Min, XU Jian-Tang, TAO Ai-Fen, LIU Xiao-Qian. Effect of Salt Stress on the Growth and Antioxidant Enzyme Activity of Kenaf Seedlings[J]. Plant Science Journal, 2011, 1(4): 493-501.
    [9]QIAN Li-Na, CHEN Ping, LI Xiao-Li, JIANG Liang, ZHAN Sha. Study on Antioxidant Activity of Total Saponins in Panax japonicus[J]. Plant Science Journal, 2008, 26(6): 674-676.
    [10]ZHANG Gai-Ping, YANG Jian-Xiong, ZHU Yu-An. Study on Antioxidant Activity of Lithospermum erythrorhizon in vitro[J]. Plant Science Journal, 2007, 25(5): 490-493.
  • Cited by

    Periodical cited type(9)

    1. 杨奕颖,苏思霖,曹恩志,李红有,迟洪明,蔺凯,吴旭东,何文强,杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响. 中国沙漠. 2025(01): 162-172 .
    2. 杨建欣,龚买玉,马长乐,樊智丰,高灿,王李娟,邓莉兰. 大头茶属3种植物天然居群的叶表型性状特征研究. 植物科学学报. 2025(01): 21-31 . 本站查看
    3. 冯云,张韫,范少辉,刘广路,魏松坡. 12种竹子的叶表型变异及其与环境因子的关系. 西北林学院学报. 2024(01): 147-153 .
    4. 马凡强,简尊吉,郭泉水,秦爱丽,梁洪海,杨永明. 长期水陆周期性变化条件下香根草形态性状和生物量分配的可塑性. 生态学报. 2023(02): 672-680 .
    5. 吴天彧,杨依康,周帅,张清舒,罗建. 色季拉山不同海拔梯度下三花杜鹃叶表型性状变异研究. 高原农业. 2022(01): 41-48 .
    6. 袁娅娟,白小明,朱雅楠,张毓婧,闫玉邦,张才忠,李玉杰. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报(中英文). 2021(08): 1359-1369 .
    7. 牛雪婧,聂靖,杨自云,赵雪利. 河北木蓝叶表型对干旱胁迫的响应. 西北植物学报. 2020(04): 613-623 .
    8. 刘涛,吕婷,刘玉萍,梁瑞芳,陈志,苏旭. 青藏高原特有属——固沙草属表型变异及其对环境因子的响应. 西北植物学报. 2020(07): 1219-1229 .
    9. 艾喆,徐婷婷,周兆娜,马飞. 小叶锦鸡儿天然居群叶形态性状变异研究. 西北植物学报. 2020(09): 1595-1604 .

    Other cited types(5)

Catalog

    Article views (612) PDF downloads (651) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return