Advance Search
Han Jia-Xin, Zheng Hao, Zhang Qiong, Zhong Cai-Hong. Research advances in the metabolism and regulation of carbohydrate in fruit trees[J]. Plant Science Journal, 2020, 38(1): 143-149. DOI: 10.11913/PSJ.2095-0837.2020.10143
Citation: Han Jia-Xin, Zheng Hao, Zhang Qiong, Zhong Cai-Hong. Research advances in the metabolism and regulation of carbohydrate in fruit trees[J]. Plant Science Journal, 2020, 38(1): 143-149. DOI: 10.11913/PSJ.2095-0837.2020.10143

Research advances in the metabolism and regulation of carbohydrate in fruit trees

Funds: 

This work was supported by grants from the National Key Research and Development Project of China (2019YFD1000800),National Natural Science Foundation of China (31772268), Wuhan Applied Basic Research Project (2019020101010075), and Backbone Talent Program of the Wuhan Botanical Garden, Chinese Academy of Sciences (Y855251A04).

More Information
  • Received Date: August 31, 2019
  • Revised Date: October 12, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Sugar is the main carbon source in organisms and the main product of photosynthesis. It provides energy for organisms and plays an important role in plant growth and development. In this review, recent studies on the relationships among sugar, plant growth regulation, and fruit quality formation are summarized, with a focus on sugar transport and accumulation, gene expression, sugar signal transduction, and sugar regulation network. We also discuss prospects for further research on improving fruit quality by molecular means.
  • [1]
    Fang C, Fernie AR, Luo J. Exploring the diversity of plant metabolism[J]. Trends Plant Sci, 2019, 24(1):83-98.
    [2]
    张凤霞, 王国栋. 植物代谢组学应用研究:现状与展望[J]. 中国农业科技导报, 2013, 15(2):28-32.

    Zhang FX, Wang GD. The applications of metabolomics in plant biology current status and prospective[J]. Review of China Agricultural Science and Technology, 2013, 15(2):28-32.
    [3]
    赵丹, 刘鹏飞, 潘超, 杜仁鹏, 葛菁萍. 生态代谢组学研究进展[J]. 生态学报, 2015, 35(15):4958-4967.

    Zhao D, Liu PF,Pan C,Du RP,Ge JP. Advances in ecometabolomics[J]. Acta Ecologica Sinica, 2015, 35(15):4958-4967.
    [4]
    Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis[J]. Plant Cell, 2005, 17(12):3257-3281.
    [5]
    Zhen QL, Fang T, Peng Q, Liao L, Zhao L, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Hortic Res, 2018, 5(1):14.
    [6]
    Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat[J]. Mol Plant, 2010, 3(6):942-955.
    [7]
    Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, Hao YJ. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiol, 2017, 174(4):2348-2362.
    [8]
    Vimolmangkang S, Zheng HY, Peng Q, Jiang Q, Wang HL, et al. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit[J]. J Agric Food Chem, 2016, 64(35):6723-6729.
    [9]
    Li MJ, Li PM, Ma FW, Dandekar AM, Cheng LL. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis[J]. Hortic Res, 2018, 5(1):60.
    [10]
    Meng D, He MY, Bai Y, Xu HX, Dandekar AM, et al. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via a MYB transcription factor, MdMYB39L, in apple (Malus domestica)[J]. New Phytol, 2018, 217(2):641-656.
    [11]
    Meng D, Li CL, Park HJ, González J, Wang JY, et al. Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple[J]. Plant Cell, 2018, 30(7):1562-1581.
    [12]
    张懿, 张大兵, 刘曼. 植物体内糖分子的长距离运输及其分子机制[J]. 植物学报, 2015, 50(1):107-121.

    Zhang Y, Zhang DB, Liu M. The molecular mechanism of long-distance sugar transport in plants[J]. Chinese Bulletin of Botany, 2015, 50(1):107-121.
    [13]
    Chen C, Yuan YL, Zhang C, Li HX, Ma FW, Li MJ. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit[J]. Plant Sci, 2017, 255:40-50.
    [14]
    Cheng JT, Wen SY, Xiao S, Lu BY, Ma MR, Bie ZL. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. J Exp Bot, 2018, 69(3):511-523.
    [15]
    Frommer WB, Sosso D, Chen LQ. SWEET glucoside transporter superfamily[M]//Roberts GCK, ed.Encyclopedia of Biophysics. Leicester:Springer, 2013.
    [16]
    孙文杰, 左开井. SWEET转运蛋白家族的发现、结构及功能研究进展[J]. 分子植物育种, 2016, 14(4):878-885.

    Sun WJ, Zuo KJ. The finding of SWEET transporter family and the research advance on its structure and function[J]. Molecular Plant Breeding, 2016,14(4):878-885.
    [17]
    涂文睿, 蔡昱萌, 颜婧, 卢江, 张雅丽. 植物蔗糖转运蛋白及其生理功能的研究进展[J]. 生物技术通报, 2017, 33(4):1-7.

    Tu WR, Cai YM, Yan J, Lu J, Zhang YL. Research progresses on plant sucrose transporters and physiological functions[J]. Biotechnology Bulletin, 2017, 33(4):1-7.
    [18]
    Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508(7497):546-549.
    [19]
    Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN.RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiol, 2008, 147(2):852-863.
    [20]
    Sun MX, Huang XY, Yang J, Guan YF, Yang ZN. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J]. Plant Reprod, 2013, 26(2):83-91.
    [21]
    Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. Plant Cell, 2015, 27(3):607-619.
    [22]
    Sosso D, Luo DP, Li QB, Sasse J, Yang JL, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nat Genet, 2015, 47(12):1489-1493.
    [23]
    Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. Overexpression of the vacuolar sugar carrierAtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiol, 2013, 163(3):1338-1352.
    [24]
    Zhou Y, Liu L, Huang WF, Yuan M, Zhou F, et al. Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence[J]. PLoS One, 2014, 9(4):e94210.
    [25]
    Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al.AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245.
    [26]
    Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytol, 2014, 201(4):1150-1155.
    [27]
    秦巧平, 林飞凡, 张岚岚. 枇杷果实糖酸积累的分子生理机制[J]. 浙江农林大学学报, 2012, 29(3):453-457.

    Qin QP, Lin FF, Zhang LL. Review of the studies on the accumulation mechanisms of sugar and organic acids in Eriobotrya japonica fruit[J]. Journal of Zhejiang A & F University, 2012, 29(3):453-457.
    [28]
    Yang JJ, Zhu LC, Cui WF, Zhang C, Li DX, et al. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves[J]. Hortic Res, 2018, 5(1):71.
    [29]
    Usenik V, Fabčič J, Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.)[J]. Food Chem, 2008, 107(1):185-192.
    [30]
    Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, et al. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage[J]. Plant Phy-siol, 2011, 157(4):1696-1710.
    [31]
    Nardozza S, Boldingh HL, Osorio S, Hohne M, Wohlers M, et al. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism[J]. J Exp Bot, 2013, 64(16):5049-5063.
    [32]
    陈俊伟, 张上隆, 张良诚. 果实中糖的运输、代谢与积累及其调控[J]. 植物生理与分子生物学学报, 2004, 30(1):1-10.

    Chen JW, Zhang SL, Zhang LC. Sugar transport, meta-bolism, accumulation and their regulation in fruits[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):1-10.
    [33]
    魏建梅, 齐秀东, 朱向秋, 马锋旺. 苹果果实糖积累特性与品质形成的关系[J]. 西北植物学报, 2009, 29(6):1193-1199.

    Wei JM, Qi XD, Zhu XQ, Ma FW. Relationship between the characteristics of sugar accumulation and fruit quality in apple (Malus domestica Borkh.) fruit[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(6):1193-1199.
    [34]
    Cirilli M, Bassi D, Ciacciulli A. Sugars in peach fruit:a breeding perspective[J]. Hortic Res, 2016, 3:15067.
    [35]
    Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, et al. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development[J]. Plant Physiol, 2008, 148(2):730-750.
    [36]
    柴叶茂, 贾海锋, 李春丽, 秦岭, 沈元月. 草莓果实发育过程中糖代谢相关基因的表达分析[J]. 园艺学报, 2011, 38(4):637-643.

    Chai YM, Jia HF, Li CL, Qin L, Shen YY. Transcriptional analysis of sugar metabolism-related genes during strawberry fruit development[J]. Acta Horticulturae Sinica, 2011, 38(4):637-643.
    [37]
    赵树堂, 关军锋, 孟庆瑞, 杨建民, 张元慧. 李果实发育过程中糖、酸、维生素C含量的变化[J]. 果树学报, 2004, 21(6):612-614.

    Zhao ST, Guan JF, Meng QR, Yang JM, Zhang YH. Changes in contents of sugar, acid, Vitamin C during fruit development of four plum cultivars[J]. Journal of Fruit Science, 2004, 21(6):612-614.
    [38]
    刘硕, 刘有春, 刘宁, 张玉萍,章秋平,等. 李属(Prunus)果树品种资源果实糖和酸的组分及其构成差异[J]. 中国农业科学, 2016, 49(16):3188-3198.

    Liu S, Lin YC, Liu N, Zhang YP, Zhang QP, et al. Sugar and organic acid components in fruits of plum cultivar resources of genus Prunus[J]. Scientia Agricultura Sinica, 2016, 49(16):3188-3198.
    [39]
    Li L, Sheen J. Dynamic and diverse sugar signaling[J]. Curr Opin Plant Biol, 2016, 33:116-125.
    [40]
    Chen QS, Xu XY, Xu D, Zhang HS, Zhang Ck, Li G. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar[J]. Plant Physiol, 2019, 180(4):2212-2226.
    [41]
    赵江涛, 李晓峰, 李航, 徐睿忞. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学, 2006, 34(24):6423-6425.

    Zhao JT, Li XF, Li H, Xu RW. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. Journal of Anhui Agricultural Sciences, 2006, 34(24):6423-6425.
    [42]
    Eveland AL, Jackson DP. Sugars, signalling, and plant development[J]. J Exp Bot, 2012, 63(9):3367-3377.
    [43]
    Peng YC, Chen LL, Li SJ, Zhang YY, Xu R, et al. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis[J]. Nat Commun, 2018, 9(1):1522.
    [44]
    Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development[J]. J Exp Bot, 2014, 65(3):799-807.
    [45]
    Rushton PJ, Somssich IE, Ringler P, Shen Q. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.
  • Related Articles

    [1]Lü Zonghuan, Han Kangni, Du Xiaofen, Wang Zhilan, Li Yuxin, Lian Shichao, Zhang Linyi, Wang Jun. Identification and application of salt-tolerant germplasms at germination stage in foxtail millet(Setaria italica L.)[J]. Plant Science Journal, 2024, 42(1): 75-84. DOI: 10.11913/PSJ.2095-0837.23055
    [2]Shen Tao, Wang Yuan-Zhong. Phenotypic characteristics and comprehensive evaluation of high-quality germplasm resources of Gentiana rigescens Franch. ex Hemsl.[J]. Plant Science Journal, 2023, 41(4): 479-489. DOI: 10.11913/PSJ.2095-0837.22227
    [3]Zhang Ying-Chan, Han Sheng-Nan, Wang Lu, Niu Shan-Ce, Hao Li-Hong, Zheng Zhi-Xing, Chen Duan-Fen, Xiang Di-Ying. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal, 2023, 41(2): 245-255. DOI: 10.11913/PSJ.2095-0837.22167
    [4]WANG Hai-ling, XIANG Wei, ZHU Shi-dan, ZHAO Hao-yang, DUAN Wei-xing, ZHU Jun-jie. Correlation between leaf structural traits and cold resistance in Saccharum officinarum L.[J]. Plant Science Journal, 2021, 39(6): 672-680. DOI: 10.11913/PSJ.2095-0837.2021.60672
    [5]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [6]MEI Xin, YANG Xin-Sun, HE Jian-Jun, SHI Jian-Bin, LIU Yi, CAI Sha, TU Yan-Hua, CHEN Xue-Ling, JIAO Chun-Hai, SU Wen-Jin. Factor Analysis and Synthetic Evaluation of the Main Qualities of Vegetable Sweetpotato Advanced Selections[J]. Plant Science Journal, 2016, 34(4): 614-621. DOI: 10.11913/PSJ.2095-0837.2016.40614
    [7]ZHANG Jun, LU Min, SUN Shu-Gui, PANG Yu-Hui, JING Fan, CHEN Xin-Hong. Screening Indexes for Drought Resistance of Seven Winter Wheat Cultivars at the Grain-filling Stage[J]. Plant Science Journal, 2014, 32(2): 148-157. DOI: 10.3724/SP.J.1142.2014.20148
    [8]LI Feng-Qi, KONG Ling-Rang, LIU Yu-Sheng, WANG He-Zhou, PENG Jun-Hua. TOPSIS Based Comprehensive Evaluation of the Resistance in Wheat Germplasm to English Grain Aphid[J]. Plant Science Journal, 2013, 31(3): 228-241. DOI: 10.3724/SP.J.1142.2013.30228
    [9]Din Xiaoyu, Shi Guoxin, Chen Weipei, Xiu Xiangshen. MORPHOLOGICAL STUDIES ON THE DEVELOPMENT AND COLD RESISTANCE OF THE WINTER BUDS OF ZIZANIA CADUCIFLORA HAND.-MAZZ.[J]. Plant Science Journal, 1993, 11(2): 104-110.
    [10]Sun Zhonghai, Zhang Wencai, Qu Shengxiang, Ma Xiangtao. STUDIES ON THE FATTY ACIDS COMPOSITION OF THE CITRUS CELL MEMBRANE AND ITS RELATIONSHIP WITH THE COLD RESISTANCE[J]. Plant Science Journal, 1990, 8(1): 79-86.

Catalog

    Article views (893) PDF downloads (1393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return