Citation: | Han Jia-Xin, Zheng Hao, Zhang Qiong, Zhong Cai-Hong. Research advances in the metabolism and regulation of carbohydrate in fruit trees[J]. Plant Science Journal, 2020, 38(1): 143-149. DOI: 10.11913/PSJ.2095-0837.2020.10143 |
[1] |
Fang C, Fernie AR, Luo J. Exploring the diversity of plant metabolism[J]. Trends Plant Sci, 2019, 24(1):83-98.
|
[2] |
张凤霞, 王国栋. 植物代谢组学应用研究:现状与展望[J]. 中国农业科技导报, 2013, 15(2):28-32.
Zhang FX, Wang GD. The applications of metabolomics in plant biology current status and prospective[J]. Review of China Agricultural Science and Technology, 2013, 15(2):28-32.
|
[3] |
赵丹, 刘鹏飞, 潘超, 杜仁鹏, 葛菁萍. 生态代谢组学研究进展[J]. 生态学报, 2015, 35(15):4958-4967.
Zhao D, Liu PF,Pan C,Du RP,Ge JP. Advances in ecometabolomics[J]. Acta Ecologica Sinica, 2015, 35(15):4958-4967.
|
[4] |
Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis[J]. Plant Cell, 2005, 17(12):3257-3281.
|
[5] |
Zhen QL, Fang T, Peng Q, Liao L, Zhao L, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Hortic Res, 2018, 5(1):14.
|
[6] |
Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat[J]. Mol Plant, 2010, 3(6):942-955.
|
[7] |
Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, Hao YJ. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiol, 2017, 174(4):2348-2362.
|
[8] |
Vimolmangkang S, Zheng HY, Peng Q, Jiang Q, Wang HL, et al. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit[J]. J Agric Food Chem, 2016, 64(35):6723-6729.
|
[9] |
Li MJ, Li PM, Ma FW, Dandekar AM, Cheng LL. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis[J]. Hortic Res, 2018, 5(1):60.
|
[10] |
Meng D, He MY, Bai Y, Xu HX, Dandekar AM, et al. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via a MYB transcription factor, MdMYB39L, in apple (Malus domestica)[J]. New Phytol, 2018, 217(2):641-656.
|
[11] |
Meng D, Li CL, Park HJ, González J, Wang JY, et al. Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple[J]. Plant Cell, 2018, 30(7):1562-1581.
|
[12] |
张懿, 张大兵, 刘曼. 植物体内糖分子的长距离运输及其分子机制[J]. 植物学报, 2015, 50(1):107-121.
Zhang Y, Zhang DB, Liu M. The molecular mechanism of long-distance sugar transport in plants[J]. Chinese Bulletin of Botany, 2015, 50(1):107-121.
|
[13] |
Chen C, Yuan YL, Zhang C, Li HX, Ma FW, Li MJ. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit[J]. Plant Sci, 2017, 255:40-50.
|
[14] |
Cheng JT, Wen SY, Xiao S, Lu BY, Ma MR, Bie ZL. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. J Exp Bot, 2018, 69(3):511-523.
|
[15] |
Frommer WB, Sosso D, Chen LQ. SWEET glucoside transporter superfamily[M]//Roberts GCK, ed.Encyclopedia of Biophysics. Leicester:Springer, 2013.
|
[16] |
孙文杰, 左开井. SWEET转运蛋白家族的发现、结构及功能研究进展[J]. 分子植物育种, 2016, 14(4):878-885.
Sun WJ, Zuo KJ. The finding of SWEET transporter family and the research advance on its structure and function[J]. Molecular Plant Breeding, 2016,14(4):878-885.
|
[17] |
涂文睿, 蔡昱萌, 颜婧, 卢江, 张雅丽. 植物蔗糖转运蛋白及其生理功能的研究进展[J]. 生物技术通报, 2017, 33(4):1-7.
Tu WR, Cai YM, Yan J, Lu J, Zhang YL. Research progresses on plant sucrose transporters and physiological functions[J]. Biotechnology Bulletin, 2017, 33(4):1-7.
|
[18] |
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508(7497):546-549.
|
[19] |
Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN.RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiol, 2008, 147(2):852-863.
|
[20] |
Sun MX, Huang XY, Yang J, Guan YF, Yang ZN. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J]. Plant Reprod, 2013, 26(2):83-91.
|
[21] |
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. Plant Cell, 2015, 27(3):607-619.
|
[22] |
Sosso D, Luo DP, Li QB, Sasse J, Yang JL, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nat Genet, 2015, 47(12):1489-1493.
|
[23] |
Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. Overexpression of the vacuolar sugar carrierAtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiol, 2013, 163(3):1338-1352.
|
[24] |
Zhou Y, Liu L, Huang WF, Yuan M, Zhou F, et al. Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence[J]. PLoS One, 2014, 9(4):e94210.
|
[25] |
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al.AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245.
|
[26] |
Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytol, 2014, 201(4):1150-1155.
|
[27] |
秦巧平, 林飞凡, 张岚岚. 枇杷果实糖酸积累的分子生理机制[J]. 浙江农林大学学报, 2012, 29(3):453-457.
Qin QP, Lin FF, Zhang LL. Review of the studies on the accumulation mechanisms of sugar and organic acids in Eriobotrya japonica fruit[J]. Journal of Zhejiang A & F University, 2012, 29(3):453-457.
|
[28] |
Yang JJ, Zhu LC, Cui WF, Zhang C, Li DX, et al. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves[J]. Hortic Res, 2018, 5(1):71.
|
[29] |
Usenik V, Fabčič J, Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.)[J]. Food Chem, 2008, 107(1):185-192.
|
[30] |
Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, et al. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage[J]. Plant Phy-siol, 2011, 157(4):1696-1710.
|
[31] |
Nardozza S, Boldingh HL, Osorio S, Hohne M, Wohlers M, et al. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism[J]. J Exp Bot, 2013, 64(16):5049-5063.
|
[32] |
陈俊伟, 张上隆, 张良诚. 果实中糖的运输、代谢与积累及其调控[J]. 植物生理与分子生物学学报, 2004, 30(1):1-10.
Chen JW, Zhang SL, Zhang LC. Sugar transport, meta-bolism, accumulation and their regulation in fruits[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):1-10.
|
[33] |
魏建梅, 齐秀东, 朱向秋, 马锋旺. 苹果果实糖积累特性与品质形成的关系[J]. 西北植物学报, 2009, 29(6):1193-1199.
Wei JM, Qi XD, Zhu XQ, Ma FW. Relationship between the characteristics of sugar accumulation and fruit quality in apple (Malus domestica Borkh.) fruit[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(6):1193-1199.
|
[34] |
Cirilli M, Bassi D, Ciacciulli A. Sugars in peach fruit:a breeding perspective[J]. Hortic Res, 2016, 3:15067.
|
[35] |
Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, et al. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development[J]. Plant Physiol, 2008, 148(2):730-750.
|
[36] |
柴叶茂, 贾海锋, 李春丽, 秦岭, 沈元月. 草莓果实发育过程中糖代谢相关基因的表达分析[J]. 园艺学报, 2011, 38(4):637-643.
Chai YM, Jia HF, Li CL, Qin L, Shen YY. Transcriptional analysis of sugar metabolism-related genes during strawberry fruit development[J]. Acta Horticulturae Sinica, 2011, 38(4):637-643.
|
[37] |
赵树堂, 关军锋, 孟庆瑞, 杨建民, 张元慧. 李果实发育过程中糖、酸、维生素C含量的变化[J]. 果树学报, 2004, 21(6):612-614.
Zhao ST, Guan JF, Meng QR, Yang JM, Zhang YH. Changes in contents of sugar, acid, Vitamin C during fruit development of four plum cultivars[J]. Journal of Fruit Science, 2004, 21(6):612-614.
|
[38] |
刘硕, 刘有春, 刘宁, 张玉萍,章秋平,等. 李属(Prunus)果树品种资源果实糖和酸的组分及其构成差异[J]. 中国农业科学, 2016, 49(16):3188-3198.
Liu S, Lin YC, Liu N, Zhang YP, Zhang QP, et al. Sugar and organic acid components in fruits of plum cultivar resources of genus Prunus[J]. Scientia Agricultura Sinica, 2016, 49(16):3188-3198.
|
[39] |
Li L, Sheen J. Dynamic and diverse sugar signaling[J]. Curr Opin Plant Biol, 2016, 33:116-125.
|
[40] |
Chen QS, Xu XY, Xu D, Zhang HS, Zhang Ck, Li G. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar[J]. Plant Physiol, 2019, 180(4):2212-2226.
|
[41] |
赵江涛, 李晓峰, 李航, 徐睿忞. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学, 2006, 34(24):6423-6425.
Zhao JT, Li XF, Li H, Xu RW. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. Journal of Anhui Agricultural Sciences, 2006, 34(24):6423-6425.
|
[42] |
Eveland AL, Jackson DP. Sugars, signalling, and plant development[J]. J Exp Bot, 2012, 63(9):3367-3377.
|
[43] |
Peng YC, Chen LL, Li SJ, Zhang YY, Xu R, et al. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis[J]. Nat Commun, 2018, 9(1):1522.
|
[44] |
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development[J]. J Exp Bot, 2014, 65(3):799-807.
|
[45] |
Rushton PJ, Somssich IE, Ringler P, Shen Q. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.
|