Advance Search
Gao Chong-Lun, Huang Jia-Quan, Cheng Shan-Han, Wang Zhi-Wei, Yin Li-Yan. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249
Citation: Gao Chong-Lun, Huang Jia-Quan, Cheng Shan-Han, Wang Zhi-Wei, Yin Li-Yan. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249

Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.

Funds: 

This work was supported by grants from the National Key Research and Development Program of China (2018YFD1000800), National Natural Science Foundation of China (31760578), and Startup Funding from Hainan University (KYQD1656).

More Information
  • Received Date: July 31, 2019
  • Revised Date: September 02, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2020
  • Based on bioinformatics, 28 HSF candidate genes were identified in the whole genome sequence of Capsicum chinense Jacq. The chromosome distribution, gene structure, and 3D characteristics of these candidate genes were analyzed. Results showed that the protein length of the 28 candidate genes ranged from 128 to 526 aa. Phylogenetic analysis showed that HSF could be divided into A, B, and C subfamilies. In total, 27 HSF transcripts were detected by RNA-seq. Compared with the control group, 25 genes in the experimental group exhibited different responses under heat stress.
  • [1]
    Hu Y, Han YT, Wei W, Li YJ, Zhang K, et al. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fraga-ria vesca[J]. Front Plant Sci, 2015, 6:736.
    [2]
    Wang J, Sun N, Deng T, Zhang LD, Zuo KJ. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum)[J]. BMC Genomics, 2014, 15:961.
    [3]
    Wang PF, Song H, Li CS, Li PC, Li AQ, et al. Genome-wide dissection of the heat shock transcription factor family genes in Arachis[J]. Front Plant Sci, 2017, 8:106.
    [4]
    Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family:structure, function and evolution[J]. Biochim Biophys Acta, 2012, 1819(2):104-119.
    [5]
    Jin GH, Gho HJ, Jung KH. A systematic view of rice heat shock transcription factor family using phylogenomic analysis[J]. J Plant Physiol, 2013, 170(3):321-329.
    [6]
    Guo M, Lu JP, Zhai YF, Chai WG, Gong ZH, et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.)[J]. BMC Plant Biol, 2015, 15:151.
    [7]
    Åkerfelt M, Morimoto RI, Sistonen L. Heat shock factors:integrators of cell stress, development and lifespan[J]. Nat Rev Mol Cell Biol, 2010, 11(8):545-555.
    [8]
    Garbuz DG. Regulation of heat shock gene expression in response to stress[J]. Mol Biol, 2017, 51(3):400-417.
    [9]
    Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J].J Biosciences, 2004, 29(4):471-487.
    [10]
    Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem, 2009, 47(9):785-795.
    [11]
    Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones, 2001, 6(3):177-189.
    [12]
    Koskull-Döring PV, Scharf KD, Nover L. The diversity of plant heat stress transcription factors[J]. Trends Plant Sci, 2007, 12(10):452-457.
    [13]
    Schmidt R, Schippers JH, Welker A, Mieulet D, Guiderdoni E, et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica[J]. AoB Plants, 2012:pls011.
    [14]
    Yang ZF, Wang YF, Gao Y, Zhou Y, Zhang EY, et al. Adaptive evolution and divergent expression of heat stress transcription factors in grasses[J]. BMC Evol Biol, 2014, 14:147.
    [15]
    赵明宣, 胡晓君. 植物热激转录因子研究进展[J]. 植物学研究, 2018, 7(2):158-163.

    Zhao MX, Hu XJ. The research progress of heat shock transcription factors in plants[J]. Botanical Research, 2018, 7(2):158-163.
    [16]
    Liu B, Liu LL, Tian LY, Cao WX, Zhu Y, et al. Post-hea-ding heat stress and yield impact in winter wheat of China[J]. Global Change Biol, 2014, 20:372-381.
    [17]
    Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. shishito) exposed to high-temperature stress[J]. Sci Horti, 2008, 117:21-25.
    [18]
    邹学校. 中国辣椒[M]. 北京:中国农业出版社, 2002.
    [19]
    Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.
    [20]
    Prändl R, Hinderhofer K, Eggers-Schumacher G, Schöffl F. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants[J]. Mol Gen Genet, 1998, 258:269-278.
    [21]
    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta, 2008, 227(5):957-967.
    [22]
    Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, et al. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers[J]. J Exp Bot, 2010, 61(2):453-462.
    [23]
    Qin C, Yu CS, Shen YO, Fang XD, Chen L, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization[J]. Proc Natl Acad Sci USA, 2014, 111(14):5135-5140.
    [24]
    陈勇兵, 王燕, 张海利. 番茄热激转录因子Hsf基因家族鉴定及表达分析[J]. 农业生物技术学报, 2015, 23(4):492-501.

    Chen YB, Wang Y, Zhang HL. Identification and expression analysis of heat shock factor (Hsf) gene family in tomato (Solanum lycopersicum)[J]. Journal of Agricultural Biotechnology, 2015, 23(4):492-501.
    [25]
    Zhu XY, Huang CQ, Zhang L, Liu HF, Yu JH, et al. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses[J]. Front Plant Sci, 2017, 8:1174.
    [26]
    Shim D, Hwang JU, Lee J, Lee S, Choi Y, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. Plant Cell, 2009, 21:4031-4043.
    [27]
    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response[J]. Trends Plant Sci, 2017, 22(1):53-65.
    [28]
    Guo LH, Chen SN, Liu KH, Liu YF, Ni LH, et al. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana[J]. Plant Cell Physiol, 2008, 49(9):1306-1315.
    [29]
    Zhang J, Liu BB, Li JB, Zhang L, Wang Y, et al. Hsf and Hsp gene families in Populus:genome-wide identification, organization and correlated expression during development and in stress responses[J]. BMC Genomics, 2015, 16:181.
    [30]
    Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermoto-lerance[J]. Plant Physiol, 2011, 157(3):1243-1254.
    [31]
    Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates[J]. Proc Natl Acad Sci USA, 2007, 104(3):1075-1080.
    [32]
    Wang XY, Zhuang LL, Shi Y, Huang BER. Up-Regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis[J]. Int J Mol Sci, 2017, 18:1981.
    [33]
    Wang YX, Zhang HL, Hou PF, Su XY, Zhao PF, et al. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense[J]. Plant Growth Regul, 2014, 73(3):289-297.
    [34]
    Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, et al. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83:313-323.
  • Related Articles

    [1]Wei Sha-Sha, Li Peng-Peng, Yuan Long-Yi, Li Wei, Jiang Hong-Sheng. Leaf structure and inorganic carbon acquisition strategies of heteroblastic aquatic plants at different stages of development[J]. Plant Science Journal, 2022, 40(4): 544-552. DOI: 10.11913/PSJ.2095-0837.2022.40544
    [2]Wan Xiao-Xia, Sun Li-Yong, Zou Xuan, Chen Yao, Jiang Zheng, Yin Zeng-Fang. Branching and flowering regularity of Michelia maudiae Dunn with systematic and evolutionary evidence[J]. Plant Science Journal, 2021, 39(3): 229-237. DOI: 10.11913/PSJ.2095-0837.2021.30229
    [3]Du Yan, Liu Xin, Zhang Han-Yue, Li Hui, Bao Wei-Kai. Species composition and community structure of the subtropical evergreen broad-leaved forest in Hongling Mountain, Tianquan County, Sichuan Province, China[J]. Plant Science Journal, 2019, 37(5): 583-592. DOI: 10.11913/PSJ.2095-0837.2019.50583
    [4]Song Jun-Yang, Luo Teng, Zhang Ning. Leaf structure characteristics of five species of Cymbidium[J]. Plant Science Journal, 2019, 37(4): 422-433. DOI: 10.11913/PSJ.2095-0837.2019.40422
    [5]Jiang Yu, Tao Lian, He Jun-Rong. Structure of leaf variegation in Cymbidium tortisepalum Fukuy. var. longibracteatum[J]. Plant Science Journal, 2018, 36(1): 112-118. DOI: 10.11913/PSJ.2095-0837.2018.10112
    [6]Song Li-Ya, Li Yong-Quan, Zhang Wei, Shao Jian-Wen. Highly differentiated phylogeographic structure of Primula ranunculoides[J]. Plant Science Journal, 2017, 35(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2017.40503
    [7]LEI Ping, ZOU Si-Cheng, LAN Wen-Jun. Structural and Quantity Characteristics of Riparian Zone Broad-leaved Forest Communities under Different Disturbance Intensities in Jiangxi Wuyi Mountain[J]. Plant Science Journal, 2014, 32(5): 460-466. DOI: 10.11913/PSJ.2095-0837.2014.50460
    [8]LU Zhi-Jun, BAO Da-Chuan, GUO Yi-Li, LU Jun-Meng, WANG Qing-Gang, HE Dong, ZHANG Kui-Han, XU Yao-Zhan, LIU Hai-Bo, MENG Hong-Jie, HUANG Han-Dong, WEI Xin-Zeng, LIAO Jian-Xiong, QIAO Xiu-Juan, JIANG Ming-Xi, GU Zhi-Rong, LIAO Chun-Lin. Community Composition and Structure of Badagongshan (BDGS) Forest Dynamic Plot in a Mid-subtropical Mountain Evergreen and Deciduous Broad-leaved Mixed Forest, Central China[J]. Plant Science Journal, 2013, 31(4): 336-344. DOI: 10.3724/SP.J.1142.2013.40336
    [9]ZHENG Li-Feng, ZHOU Xin-Nian. Influence of the Selective Intensity on Spatial Structure of Mid-subtropical Natural Mixed Stand of Conifer and Broad-leaved Trees[J]. Plant Science Journal, 2009, 27(5): 515-521.
    [10]Wang Guiqin, Lu Jingmei, Hu Bo. EVOLUTIONAL STRUCTURE STUDY OF VESSEL ELEMENT ON DIFFERENT EVOLVEMENT TYPE OF GLYCINE[J]. Plant Science Journal, 2000, 18(4): 271-274,.

Catalog

    Article views (775) PDF downloads (748) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return