Advance Search
Huang Miao-Qin, Gao Bao-Yan, Liu Guo-Xiang, Hu Zheng-Yu, Hu Qiang, Zhang Cheng-Wu. Effects of different culture conditions on growth and astaxanthin and lipid accumulation in Oedocladium sp.[J]. Plant Science Journal, 2020, 38(3): 418-427. DOI: 10.11913/PSJ.2095-0837.2020.30418
Citation: Huang Miao-Qin, Gao Bao-Yan, Liu Guo-Xiang, Hu Zheng-Yu, Hu Qiang, Zhang Cheng-Wu. Effects of different culture conditions on growth and astaxanthin and lipid accumulation in Oedocladium sp.[J]. Plant Science Journal, 2020, 38(3): 418-427. DOI: 10.11913/PSJ.2095-0837.2020.30418

Effects of different culture conditions on growth and astaxanthin and lipid accumulation in Oedocladium sp.

Funds: 

This work was supported by grants from the Sinopec Joint Program of China Petroleum and Chemical Corporation (ST18005-2), Guangzhou Science and Technology Innovation Program (201907010005), and Fundamental Research Funds for the Central Universities (21619305).

More Information
  • Received Date: October 20, 2019
  • Revised Date: November 25, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2020
  • The effects of two-step culture on growth and lipid and astaxanthin accumulation in Oedocladium sp. (filamentous green algae) were studied under three light intensities (100, 300, and bilateral 300 μmol·m-2·s-1) and four nitrogen concentrations (1, 3, 9, and 18 mmol/L). After 12 d of incubation, the media in the experimental groups were replaced with nitrogen-free and/or salt-added medium (50 mmol/L), with the control group medium not replaced. Under bilateral 300 μmol·m-2·s-1 light intensity, maximum biomass (9.61 g/L) was obtained when the medium with an initial nitrogen concentration of 18 mmol/L was replaced by medium without nitrogen. The highest astaxanthin and lipid content reached 1.62% and 51.19% of dry weight, respectively, which was attained under an initial nitrogen concentration of 3 mmol/L, salt-added culture medium replacement, and bilateral 300 μmol·m-2·s-1 light intensity. In short, high light intensity was beneficial for Oedocladium sp. growth. The optimum conditions for astaxanthin and lipid accumulation were low nitrogen concentration with salt (50 mmol/L) medium under bilateral 300 μmol·m-2·s-1 light intensity.
  • [1]
    Davinelli S, Nielsen ME, Scapagnini G. Astaxanthin in skin health, repair, and disease:a comprehensive review[J]. Nutrients, 2018, 10(4):522.
    [2]
    Ambati R, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin:sources, extraction, stability, biological activities and its commercial applications-a review[J]. Mar Drugs, 2014, 12(1):128-152.
    [3]
    Lim KC, Yusoff FM, Shariff M, Kamarudin MS. Astaxanthin as feed supplement in aquatic animals[J]. Rev Aquacult, 2018, 10(3):738-773.
    [4]
    Wang FF, Gao BY, Wu MM, Huang LD, Zhang CW. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35[J]. Algal Res, 2019, 39:101466.
    [5]
    Shah MMR, Liang YM, Chen JJ, Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis:from single cell to high value commercial products[J]. Front Plant Sci, 2016, 7:531.
    [6]
    Cheng J, Li K, Yang Z, Zhou J, Cen K. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress[J]. Bioresource Technol, 2016, 204:49-54.
    [7]
    Miki W. Biological functions and activities of animal carotenoids[J]. Pure Appl Chem, 1991, 63(1):141-146.
    [8]
    Visioli F, Artaria C. Astaxanthin in cardiovascular health and disease:mechanisms of action, therapeutic merits, and knowledge gaps[J]. Food Funct, 2017, 8(1):39-63.
    [9]
    Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F. Chlorella zofingiensis as an alternative microalgal producer of asta-xanthin:biology and industrial potential[J]. Mar Drugs, 2014, 12(6):3487-3515.
    [10]
    Singh SP, Singh P. Effect of temperature and light on the growth of algae species:a review[J]. Renew Sust Eneng Rev, 2015, 50:431-444.
    [11]
    姜思, 佟少明. 雨生红球藻虾青素合成研究进展[J]. 生物工程学报, 2019, 35(6):988-997.

    Jiang S, Tong SM. Comparative analysis of quantitation of astaxanthin in Haematococcus pluvialis[J]. Chinese Journal of Biotechnology, 2019, 35(6):988-997.
    [12]
    Gao Z, Meng C, Chen YC, Ahmed F, Mangott A, Schenk PM, Li Y. Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress[J]. J Appl Phyco, 2015, 27(5):1853-1860.
    [13]
    Boussiba S, Fan L, Vonshak A. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis[J]. Methods, 1992, 213:386-391.
    [14]
    Doria E, Temporiti MEE, Damiani MC, Popovich CA, Leonardi PI, Nielsen E. Influence of light stress on the accumulation of xanthophylls and lipids in Haematococcus pluvialis CCALA 1081 grown under autotrophic or mixotrophic conditions[J]. J Marine Biol Aquacult, 2018, 4(1):30-35.
    [15]
    Sun X, Cao Y, Xu H, Liu Y, Sun J, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process[J]. Bioresource Technol, 2014, 155:204-212.
    [16]
    江红霞, 林雄平, 轩文娟. 盐胁迫对雨生红球藻虾青素累积、虾青素合成相关酶基因表达和抗氧化指标的影响[J]. 中国水产科学, 2017, 24(6):1342-1353.

    Jiang HX, Lin XP, Xuan WJ. Effects of salt stress on astaxanthin accumulation, gene expression of astaxanthin synthesis-related enzymes, and antioxidant indices in Haematococcus pluvialis[J]. Journal of Fishery Sciences of China, 2017, 24(6):1342-1353.
    [17]
    Ohashi H. Cytological study of Oedogonium[J]. Bot Gaz, 1930, 90(2):177-197.
    [18]
    刘国祥, 毕列爵. 枝鞘藻属(Oedocladium Stahl, 1891)在我国的首次发现[J]. 武汉植物学研究, 1993, 11(3):219-221.

    Liu GX, Bi LJ. Oedocladium:an Oedogoniaceous genus first time discovered in China[J]. Journal of Wuhan Botanical Research, 1993, 11(3):219-221.
    [19]
    罗玮, 刘国祥, 胡征宇. 鞘藻属和毛鞘藻属营养细胞分裂方式的比较研究[J]. 海洋与湖沼, 2002, 33(6):640-647.

    Luo W, Liu GX, Hu ZY. A preliminary investigation of Oedocladium and Bulbochaete based on comparative stu-dies of vegetative cell division[J]. Oceanologia Et Limnologia Sinica, 2002, 33(6):640-647.
    [20]
    Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. BBA-Mol Cell Biol L, 2005, 1738(1-3):63-71.
    [21]
    Khan MI, Shin JH, Kim JD. The promising future of microalgae:current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products[J]. Microb Cell Fact, 2018, 17(1):36.
    [22]
    吴曼曼, 雷学青, 高保燕, 王飞飞, 黄罗冬, 李爱芬, 张成武. 不同培养条件对缺刻叶球藻的生长和油脂, 花生四烯酸积累的影响[J]. 中国油脂, 2017, 42(5):54-59.

    Wu MM, Lei XQ, Gao BY, Wang FF, Huang LD, Li AF, Zhang CW. Effects of different culture conditions on the growth and accumulations of lipid and arachidonic acid of Loboshpaera incisa[J]. China Oils and Fats, 2017, 42(5):54-59.
    [23]
    Dean JC, Mirkovic T, Toa ZSD, Oblinsky DG, Scholes GD. Vibronic enhancement of algae light harvesting[J]. Chem, 2016, 1(6):858-872.
    [24]
    Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation:the supply of nutrients[J]. Water Res, 2014, 65:186-202.
    [25]
    Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa[J]. J Appl Phycol, 2008, 20(3):245-251.
    [26]
    Aflalo C, Meshulam Y, Zarka A, Boussiba S. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis[J]. Biotechnol Bioeng, 2007, 98(1):300-305.
    [27]
    Ding W, Cui J, Zhao Y, Han B, Li T, et al. Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation[J]. Bioresource Technol, 2019, 285:121334.
    [28]
    Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii[J]. J Appl Phycol, 2016, 28(3):1509-1520.
    [29]
    Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities[J]. Bioresource Technol, 2016, 201:222-229.
    [30]
    Pandit PR, Fulekar MH, Karuna MSL. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris[J]. Environ Sci Pollut R, 2017, 24(15):13437-13451.
    [31]
    Lomana ALG, Schäuble S, Valenzuela J, Imam S, Carter W, et al. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii[J]. Biotechnol Biofuels, 2015, 8(1):207.
    [32]
    Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2[J]. Bioresource Technol, 2012, 109:261-265.
    [33]
    Krzemińska I, Piasecka A, Nosalewicz A, Simionato D, Wawrzykowski J. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities[J]. Bioresource Technol, 2015, 196:72-77.
    [34]
    Wang T, Ge HY, Liu TT, Tian XW, Wang ZJ, et al. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides:mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration[J]. J Biotechnol, 2016, 228:18-27.
    [35]
    Salama ES, Kim HC, Abou-Shanab RA, Ji MK, Oh YK, et al. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress[J]. Bioproc Biosyst Eng, 2013, 36(6):827-833.
  • Related Articles

    [1]BAN Jian-Jiao, FENG Jia, XIE Shu-Lian. Isolation and Screening of Microalgae with High-lipid Contents in Shanxi Province[J]. Plant Science Journal, 2013, 31(4): 415-421. DOI: 10.3724/SP.J.1142.2013.40415
    [2]FU Shao, BAO Han, KE Wei-Dong, YE Yuan-Ying, GUO You-Hao. Histochemical Observation of Polysaccharides and Lipids on Developing Anthers of Oenanthe javanica D.C[J]. Plant Science Journal, 2013, 31(1): 80-84. DOI: 10.3724/SP.J.1142.2013.10080
    [3]JIN Tong-Xia, DONG Wen-Jing, GUO Meng, DAI Ke-Yan, YANG Cheng, XU Ting-Ting, MA Jian-Min. Effects of Carbon,Nitrogen,and Phosphorus Concentration in Eutrophic Wastewater on Total Lipids and Total Hydrocarbons of Botryococcus braunii[J]. Plant Science Journal, 2012, (3): 293-298. DOI: 10.3724/SP.J.1142.2012.30293
    [4]WANG Hai-Xia, LIU Wen-Zhe. Effects of Enhanced UV-B Radiation on Biomass and Contents of Camptothecin and 10-hydroxy-camptothecin in Camptotheca acuminata[J]. Plant Science Journal, 2011, 29(6): 712-717.
    [5]MIAO Feng-Ping, LI Ye-Guang, GENG Ya-Hong, HU Hong-Jun. The Effects of Temperature on the Biomass and the Astaxanthin Output of Haematococcus pluvialis[J]. Plant Science Journal, 2005, 23(1): 73-76.
    [6]SHI Ji-Pu, ZHANG Guang-Ming, BAI Kun-Jia, TANG Jian-Wei. The Effects of Human Disturbance on Biomass and Plant Diversity of Musa acuminata Community[J]. Plant Science Journal, 2002, 20(2): 119-123.
    [7]ZAN Qi-Jie, WANG Yong-Jun, LIAO Bao-Wen, ZHENG De-Zhang. Biomass and Net Productivity of Sonneratia apetala, S. caseolaris Mangrove man-made Forest[J]. Plant Science Journal, 2001, 19(5): 391-396.
    [8]ZHANG Guang-Fu, SONG Yong-Chang. Studies on the Biomass of ,i>Castanopsis sclerophylla+ Quercus fabri Shrubland in Tiantong Region,Zhejiang Province[J]. Plant Science Journal, 2001, 19(2): 101-106.
    [9]Liang Shichu. MORPHOLOGICAL CHARACTER AND BIOMASS OF KANDELIA CANDEL SEEDLINGS[J]. Plant Science Journal, 1997, 15(2): 108-112.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(1)

    1. 盘远方,邱广龙,苏治南,邱思婷,潘良浩,范航清. 红树林人工幼林与天然成熟林叶经济谱的区别和联系. 广西科学院学报. 2024(03): 241-247 .

    Other cited types(4)

Catalog

    Article views (665) PDF downloads (574) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return