Advance Search
Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525
Citation: Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525

Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31570339).

More Information
  • Received Date: October 24, 2019
  • Revised Date: December 25, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2020
  • Panax zingiberensis C. Y. Wu et K. W. Feng is a perennial herbaceous plant belonging to the genus Panax (Araliaceae). It is an endangered species mainly distributed in southeastern and southern Yunnan, China. Like other species of Panax, P. zingiberensis (otherwise known as "Yesanqi") has high medicinal value and is used as a substitute of P. notoginseng by local people. In this study, the genetic diversity and genetic differentiation of P. zingiberensis was analyzed using data obtained from five DNA fragments and 12 microsatellite (SSR) markers. Results showed that the total nucleotide diversity of P. zingiberensis was just 0.00068 at the species level based on the combined analyses of four chloroplast fragments (psbA-trnH, psbM-trnD, rps16, and trnL-trnF), whereas the nucleotide diversity of nuclear ITS (Pi=0.01011) was high. In the 12 polymorphic microsatellite loci, a total of 89 alleles were identified, and the average number of alleles per locus was 7.417. Compared to other Panax species, P. zingiberensis had a relatively high level of nucleotide diversity and number of alleles. At the population level, population JG had the highest nucleotide diversity and number of alleles, whereas population JC had the lowest. AMOVA indicated that genetic variation among populations (55.03%) in the cpDNA fragment was greater than that within populations (44.97%). However, for the ITS fragment and SSR locus, genetic variation among populations (30.23% and 35.90%, respectively) was much lower than that within populations (69.77% and 64.10%, respectively). This indicated that P. zingiberensis had a certain degree of genetic differentiation at the species level, but it was not significant (P=0.01 or 0.05). At the population level, based on genetic differentiation indices (Fst', Gst'(Nei), and Rho) inferred from SSR data, population JC exhibited high differentiation from the other four populations, whereas no differentiation was observed among these populations. Structure analysis showed that JC and other populations were clustered into different genetic groups, respectively. Combined with phenotypic characteristics of the samples, structure analysis also showed that those individuals with similar morphological characteristics were not clustered together, whereas individuals of the same population had more similar genetic components. This study should help in the conservation of wild resources of P. zingiberensis.
  • [1]
    吴征镒, 冯国楣, 周俊. 人参属植物的三萜成分和分类系统、地理分布的关系[J]. 植物分类学报, 1975, 13(2):29-48.

    Wu ZY, Feng GM, Zhou J. Triterpenoids from Panax Linn. and their relationship with taxonomy and geographical distribution[J]. Journal of Systematics and Evolution, 1975, 13(2):29-48.
    [2]
    何景, 曾沧江. 中国植物志:第54卷[M]. 北京:科学出版社, 1978.
    [3]
    冯国楣, 李雅茹. 云南植物志:第2卷[M]. 北京:科学出版社, 1979.
    [4]
    Xiang QB, Lowry P, Wu CY. Flora of China:Vol 13[M]. Beijing:Science Press, 2007.
    [5]
    周明媚. DNA测序技术在三七及其野生近缘种鉴定中的应用[D]. 北京:中国科学院大学, 2017.
    [6]
    吴其国, 符德欢, 毛小明, 胡叶青, 高丽. 姜状三七水提物的止血镇痛作用和急性毒性反应研究[J]. 安徽农业科学, 2016, 44(3):138-140.

    Wu QG, Fu DH, Mao XM, Hu YQ, Gao L. The analgesic hemostatic action and acute toxicity reaction of water extracts from Panax zingiberensis[J]. Journal of Anhui Agricultural Sciences, 2016, 44(3):138-140.
    [7]
    Zhou MM, Gong X, Pan YZ. Panax species identification with the assistance of DNA data[J]. Genet Resour and Crop Evol, 2018, 65(7):1839-1856.
    [8]
    Zhuravlev YN, Koren OG, Reunova GD, Muzarok TI, Gorpenchenko TY, et al. Panax ginseng natural populations:their past, current state and perspectives[J]. Acat Pharmacol Sin, 2008, 29(9):1127-1136.
    [9]
    Artyukova EV, Kozyrenko MM, Koren OG, Muzarok TI, Reunova GD, et al. RAPD and allozyme analysis of gene-tic diversity in Panax ginseng C. A. Meyer and P. quinquefolius L.[J]. Russ J Genet, 2004, 40(2):178-185.
    [10]
    Vasyutkina EA, Adrianova IY, Reunova GD, Nguyen TPT, Zhuravlev YN. A comparative analysis of genetic variability and differentiation in Panax vietnamensis Ha et Grushv. and P. ginseng C. A. Meyer using ISSR markers[J]. Russ J Genet, 2018, 54(2):262-265.
    [11]
    Zhou SL, Xiong GM, Zhong YL, Wen J. Loss of genetic diversity of domesticated Panax notoginseng F H Chen as evidenced by ITS sequence and AFLP polymorphism:a comparative study with P. stipuleanatus H T Tsai et K M Feng[J]. J Integr Plant Biol, 2005, 47(1):107-115.
    [12]
    Fushimi H, Komatsu K, Namba T, Isobe M. Genetic he-terogeneity of ribosomal RNA gene and matK gene in Panax notoginseng[J]. Planta Med, 2000, 66(7):659-661.
    [13]
    Yang TT, Mu LQ, Wang J. Optimizing SSR-PCR system of Panax ginseng by orthogonal design[J]. J Forestry Res, 2007, 18(1):31-34.
    [14]
    Huang XM, Chen JM, Yang XQ, Duan SH, Long C, et al. Low genetic differentiation among altitudes in wild Camellia oleifera, a subtropical evergreen hexaploid plant[J]. Tree Genet Genomes, 2018, 14(2):21.
    [15]
    Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, et al. Identification of new microsatellite markers in Panax ginseng[J]. Mol Cells, 2007, 24(1):60-68.
    [16]
    杨维泽, 金航, 崔秀明, 沈涛, 杨美权, 张金渝. 三种人参属植物的EST-SSR信息分析及其在三七中的应用[J]. 基因组学与应用生物学, 2011, 30(1):62-71.

    Yang WZ, Jin H, Cui XM, Shen T, Yang MQ, et al. Analysis on EST-SSR of three species in genus Panax and the application in Panax notoginseng[J]. Genomics and Applied Biology, 2011, 30(1):62-71.
    [17]
    Reunova GD, Kats IL, Muzarok TI, Nguyen CTP, Dang TT, et al. Diversity of microsatellite loci in the Panax vietnamensis Ha et Grushv. (Araliaceae) population[J]. Dokl Biol Sci, 2011, 441(4):408-411.
    [18]
    Doyle J. DNA Protocols for Plants-CTAB Total DNA Isolation[M]. Berlin:Springer, 1991.
    [19]
    Zuo YJ, Zhong JC, Kondo K, Funamoto T, Wen J, et al. DNA barcoding of Panax species[J]. Planta Med, 2011, 77(2):182-187.
    [20]
    Swindell SR. Sequence Data Analysis Guidebook[M]. New York:Springer, 1997.
    [21]
    Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symp Ser, 1999, 41(41):95-98.
    [22]
    Posada D, Crandall KA. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.
    [23]
    Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data[J]. Am J Hum Genet, 2001, 68(4):978-989.
    [24]
    Hong CP, Lee SJ, Park JY, Plaha P, Park YS, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J]. Mol Genet Genomics, 2004, 271(6):709-716.
    [25]
    Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C. A. Meyer) genome and evidence for allotetraploidy[J]. Plant J, 2014, 77(6):906-916.
    [26]
    潘跃芝, 张亦弛, 龚洵, 李富生. 4种人参属植物基因组大小的测定[J]. 植物分类与资源学报, 2014, 36(2):233-236.

    Pan YZ, Zhang YC, Gong X, Li FS. Estimation of genome size of four Panax species by flow cytometry[J]. Plant Diversity and Resources, 2014, 36(2):233-236.
    [27]
    Meirmans PG, Tienderen PHV. Genotype and Genodive:two programs for the analysis of genetic diversity of ase-xual organisms[J]. Mol Ecol Notes, 2004, 4(4):792-794.
    [28]
    Meirmans PG. Using the AMOVA framework to estimate a standardized genetic differentiation measure[J]. Evolution, 2006, 60(11):2399-2402.
    [29]
    Hedrick PW. A standardized genetic differentiation mea-sure[J]. Evolution, 2005, 59(8):1633-1638.
    [30]
    Ronfort J, Jenczewski E, Bataillon T, Rousset F. Analysis of population structure in autotetraploid species[J]. Genetics, 1998, 150(2):921-930.
    [31]
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Gene-tics, 2000, 155(2):945-959.
    [32]
    Earl DA, VonHoldt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.
    [33]
    Belletti P, Diana F, Andrea P, Monteleone I. Genetic va-riation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy[J]. Eur J Forest Res, 2012, 131(4):1127-1138.
    [34]
    Pan YZ, Wang XQ, Sun GL, Li FS, Gong X. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae)[J]. PLoS One, 2016, 11(11):0166419.
    [35]
    Jo BH, Suh DS, Cho EM, Kim J, Ryu GH, et al. Characterization of polymorphic microsatellite loci in cultivated and wild Panax ginseng[J]. Genes Genom, 2009, 31(2):119-127.
    [36]
    Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, et al. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer)[J]. Conserv Genet, 2007, 8(6):1507-1509.
    [37]
    Wright S. Evolution and the Genetics of Populations[M]. Chicago:University of Chicago Press, 1978.
    [38]
    崔相艳. 野生油茶潜在分布及纬度梯度遗传分化格局[D]. 南昌: 南昌大学, 2017.
  • Related Articles

    [1]Wang Xue, Li Zhen, Liu Yan-Ling, Liang Qiong. Response of ex-situ conservation plant flowering phenology to climate change in Wuhan[J]. Plant Science Journal, 2020, 38(1): 88-96. DOI: 10.11913/PSJ.2095-0837.2020.10088
    [2]Liu Meng-Ting, Wei Xin-Zeng, Jiang Ming-Xi. Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis[J]. Plant Science Journal, 2018, 36(3): 354-361. DOI: 10.11913/PSJ.2095-0837.2018.30354
    [3]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [4]YUAN Shan, MENG Ai-Ping, LI Jian-Qiang, WANG Heng-Chang. Population Genetic Structure and Variation of Endangered Cercidiphyllum japonicum in Shennongjia Area: The Mountain Barrier to Gene Flow[J]. Plant Science Journal, 2012, 30(4): 358-365. DOI: 10.3724/SP.J.1142.2012.40358
    [5]YANG Hui, CHEN Yuan-Yuan, XU Yong-Xing, LI Zuo-Zhou. Gene Flow Dynamics of ex-situ Conservation Populations in Two Endangered Isoetes Species:Genetic Implications for Reintroduction,Conservation and Management[J]. Plant Science Journal, 2011, 29(3): 319-330.
    [6]XU Dong-Yan. Study on the Morphological Characteristic of the Wind-damaged Slash in the Restorable Community of Jinyun Mountain Nature Reserve[J]. Plant Science Journal, 2007, 25(2): 158-162.
    [7]WANG Yong, LIU Yi-Fei, LIU Song-Bai, HUANG Hong-Wen. Ex situ Conservation of Plantago fengdouensis, an Endemic and Endangered Species within the Water-level-fluctuation Zone in Three Gorges Reservoir of Changjiang River[J]. Plant Science Journal, 2006, 24(6): 574-578.
    [8]WANG Yong, WU Jin-Qing, TAO Yong, LI Zuo-Zhou, HUANG Hong-Wen. Natural Distribution and Ex Situ Conservation of Endemic Species Myricaria laxiflora in Water-level-fluctuation Zone within Three-Gorges Reservoir Area of Changjiang River[J]. Plant Science Journal, 2003, 21(5): 415-422.
    [9]SHI Sheng-You, SHANG Jin, TIAN Hai-Yan, LI Xu-Guang. Distribution Pattern and Dynamics of Dominant Population in the Progression of Ecological Restoration of Evergreen Broadleaved Forest after Wind-damage in Jinyun Mountain[J]. Plant Science Journal, 2003, 21(4): 321-326.
    [10]Zhao Jiarong, Feng Shunliang, Chen Lu, Ni Xueming, Ao Binghua. A STUDY ON EX-SITU CONSERVATION OF THE RARE PLANT S HYGRORYZA ARISTATA[J]. Plant Science Journal, 1998, 16(1): 93-95.
  • Cited by

    Periodical cited type(7)

    1. 郭舒艳,靳含,温馨,张佳丽,朱琳,苏齐针,杨颖,边媛. 生态保护红线划定下的极小种群野生植物保护研究. 中国野生植物资源. 2024(12): 107-116+123 .
    2. 孙中元,孙传涛,孙超,吕少杰,赵怡康. 烟台沿海防护林体系盐桦两年生苗造林试验初探. 山东林业科技. 2023(02): 50-54 .
    3. 欧阳子龙,张磊,苏大宏,蒙奕奕,唐健民,贾湘璐,余惠英,龚理. 珍稀濒危植物迁地保护与园林应用——以南宁植物园为例. 广西科学院学报. 2023(04): 412-425 .
    4. 安红婧,王发春,周毛措,周碧瑶,胡樱,贾慧萍,王慧春. 极小种群植物研究进展. 安徽农学通报. 2022(06): 38-40 .
    5. 王爽,吕霞. 外源ABA对干旱胁迫及复水下弥勒苣苔生长的影响. 黑龙江农业科学. 2022(06): 67-71 .
    6. 许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展. 生物多样性. 2022(10): 84-105 .
    7. 黄继红,臧润国. 中国植物多样性保护现状与展望. 陆地生态系统与保护学报. 2021(01): 66-74 .

    Other cited types(5)

Catalog

    Article views (660) PDF downloads (3055) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return