Advance Search
Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536
Citation: Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536

Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31771867,31571736).

More Information
  • Received Date: December 16, 2019
  • Revised Date: January 15, 2020
  • Available Online: October 31, 2022
  • Published Date: August 27, 2020
  • Using RACE technology, three flower types of STK homologous gene FaesSTK (GenBank accession number:MN597104) were examined from Fagopyrum esculentum Moench, and their sequence characteristics were analyzed. Sequence alignment results suggested that the sequences of the gene from the three flower types were identical. The gene was 967 bp in length and contained a 689 bp open reading frame (ORF) encoding 225 amino acids. Protein sequence alignment and phylogenetic analyses grouped the FaesSTK protein into the STK linage of D-class MADS-box transcription factors. FaesSTK contained a highly conservation MADS domain with 57 amino acids, a secondary conserved K-domain with 82 amino acids, as well as two highly conserved motifs (AGⅠ motif and AGⅡ motif) in the variable C-terminal region. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the FaesSTK gene was mainly expressed in the stamen, gynoecium, and young fruits at different developmental stages in the F. esculentum lpls mutant. Moreover, FaesSTK was weakly transcribed in the root and tepal but was absent in the leaf and stem. FaesSTK expression levels in the gynoecium and fruit were significantly higher than that in other tissues. Our data suggest that FaesSTK may play a major role in the development of the gynoecium and fruit of the F. esculentum lpls mutant.
  • [1]
    Soleti R, Andriantsitohaina R, Martinez MC. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health[J]. Arch Biochem Biophys, 2018, 644(1):57-63.
    [2]
    刘瑞, 于章龙, 柴永峰, 孙元琳, 宋昱, 等. 粮谷及其发芽物质变化研究进展[J]. 食品工业科技, 2019, 40(13):293-298.

    Liu R, Yu ZL, Chai YF, Sun YL, Song Y, et al. Research advances of substances variation in grain and germinated grain[J]. Science and Technology of Food Industry, 2019, 40(13):293-298.
    [3]
    张柯彬, 陈炳全, 刘志雄. 甜荞 FaesAP2基因的克隆与表达分析[J]. 植物科学学报, 2017, 35(3):354-361.

    Zhang KB, Chen BQ, Liu ZX. Cloning and expression analysis of the FaesAP2 gene from Fagopyrum esculentum (Polygonaceae)[J]. Plant Science Journal, 2017, 35(3):354-361.
    [4]
    Takeshima R,Nishio T, Komatsu S,Kurauchi N,Matsui K. Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum)[J]. Heredity, 2019, 123(4):492-502.
    [5]
    Li LY, Fang ZW, Li XF. Isolation and characterization of the C-class MADS-box gene from the distylous pseudo-cereal Fagopyrum esculentum[J]. J Plant Biol, 2017, 60(2):189-198.
    [6]
    方正武, 刘志雄. 甜荞花同源异型基因FeMADS1的克隆和序列结构分析[J]. 西北农业学报, 2015, 24(3):82-87.

    Fang ZW, Liu ZX. Cloning and sequence analysis of FeMADS1 gene from Fagopyrum sculentum[J]. Acta Agricu-lturae Boreali-Occidentalis Sinica, 2015, 24(3):82-87.
    [7]
    陈稳良, 李秀莲, 史兴海, 梁改梅, 刘龙龙, 等. 甜荞等花柱资源与栽培甜荞杂交初步研究[J]. 植物遗传资源学报, 2020,21(4):1030-1035.

    Cheng WL, Li XL, Shi XH, Liang GM, Liu LL, et al. A preliminary study on the hybridization of common buckwheat isostyle resources and cultivated buckwheat[J]. Journal of Plant Genetic Resources, 2020, 21(4):1030-1035.
    [8]
    黄凯丰, 李振宙, 王炎, 周良, 吴兴慧, 等. 我国荞麦高产栽培生理研究进展[J]. 贵州师范大学学报(自然科学版), 2019, 37(1):115-120.

    Huang KF, Li ZZ, Wang Y, Zhou L, Wu XH, et al. Research progress on physiology of buckwheat under high-yield cultivation[J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(1):115-120.
    [9]
    Dreni L, Kater MM. MADS reloaded:evolution of the AG-AMOUS subfamily genes[J]. New Phytol, 2014, 201(3):717-732.
    [10]
    刘磊. 番茄果实全果肉性状的精细定位与候选基因分析[D]. 北京:中国农业科学院, 2017.
    [11]
    山红艳. 三叶木通花发育相关基因的结构、功能和进化研究[D]. 北京:中国科学院大学, 2006.
    [12]
    Hu MZ, Hu WB, Xia ZQ, Zhou XC, Wang WQ. Validation of reference genes for relative quantitative gene expression studies in cassava (Manihot esculenta Crantz) by using quantitative real-time PCR[J]. Front Plant Sci, 2016, 7(7):680.
    [13]
    Yang YZ, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins[J]. Plant Mol Biol, 2004, 55(1):45-59.
    [14]
    Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. J Exp Bot, 2018, 69(10):2435-2459.
    [15]
    Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di MM, Chávez MRA,et al. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits[J]. Development, 2019,146(1):172395.
    [16]
    熊书,李彦杰,周大祥.油菜MADS-box家族基因AGL11的克隆、表达及转化油菜的研究[J].西南农业学报, 2017, 30(10):2174-2178.

    Xiong S, Li YJ, Zhou DY. Cloning and expression and transformation of MADS-box family gene AGL11 in Brassica napus[J].Southwest China Journal of Agricultural Sciences, 2017, 30(10):2174-2178.
    [17]
    Tani E, Polidoros AN, Flemetakis E, Stedel C, Kalloniati C, et al. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit[J]. Plant Physiol Biochem, 2009, 47(8):690-700.
    [18]
    Colombo L, Franken J, vander Krol AR, et al. Downregulation of ovule specific MADS box genes from petunia results in maternally controlled defects in seed development[J]. Plant Cell, 1997, 9(5):703-715.
    [19]
    Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, et al. MADS-box genes expressed during tomato seed and fruit development[J]. Plant Mol Biol, 2003, 52(4):801-815.
    [20]
    何卓远, 韦小英, 苏周, 吴雨, 雷豆, 等.向日葵MADS-box家族基因HaAGL11的克隆及表达分析[J].植物遗传资源学报, 2019, 21(1):260-268.

    He ZY, Wei XY, Su Z, Wu Y, Lei D, et al. Cloning and expression analysis of the MADS-box family gene HaAGL11 in sunflower[J]. Journal of Plant Genetic Resources, 2019, 21(1):260-268.
    [21]
    费越, 夏胜应, 熊海燕, 刘志雄. 蕙兰CyfaSTK基因的克隆与表达分析[J]. 植物科学学报, 2019, 37(5):602-609.

    Fei Y, Xia SY, Xiong HY, Liu ZX. Cloning and expression analysis of CyfaSTK gene from Cymbidium faberi[J]. Plant Science Journal, 2019, 37(5):602-609.
    [22]
    Salemme M, Sica M, Gaudio L, Aceto S. The Oita AG and Oita STK genes of the orchid Orchis italica:a comparative analysis with other C- and D-class MADS-box genes[J]. Mol Biol Rep, 2013, 40(5):3523-3535.
    [23]
    Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS and SEEDSTICK ortholog in the orchid Dendro-bium thyrsiflorum(Reichb f.)[J].Gene, 2006, 366(2):266-274.
    [24]
    吴菁华, 吴少华, 杨超, 张志忠, 林文雄. 中国水仙NtSTK基因的克隆、序列和组织表达分析[J]. 热带作物学报, 2015, 36(10):1820-1824.

    Wu JH, Wu SH, Yang C, Zhang ZZ, Lin WX. cDNA Cloning, sequence analysis and tissue expression of NtSTK in Narcissus tazetta var. chinensis[J]. Chinese Journal of Tropical Crops, 2015, 36(10):1820-1824.
  • Related Articles

    [1]Wang Xue, Li Zhen, Liu Yan-Ling, Liang Qiong. Response of ex-situ conservation plant flowering phenology to climate change in Wuhan[J]. Plant Science Journal, 2020, 38(1): 88-96. DOI: 10.11913/PSJ.2095-0837.2020.10088
    [2]Liu Meng-Ting, Wei Xin-Zeng, Jiang Ming-Xi. Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis[J]. Plant Science Journal, 2018, 36(3): 354-361. DOI: 10.11913/PSJ.2095-0837.2018.30354
    [3]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [4]YUAN Shan, MENG Ai-Ping, LI Jian-Qiang, WANG Heng-Chang. Population Genetic Structure and Variation of Endangered Cercidiphyllum japonicum in Shennongjia Area: The Mountain Barrier to Gene Flow[J]. Plant Science Journal, 2012, 30(4): 358-365. DOI: 10.3724/SP.J.1142.2012.40358
    [5]YANG Hui, CHEN Yuan-Yuan, XU Yong-Xing, LI Zuo-Zhou. Gene Flow Dynamics of ex-situ Conservation Populations in Two Endangered Isoetes Species:Genetic Implications for Reintroduction,Conservation and Management[J]. Plant Science Journal, 2011, 29(3): 319-330.
    [6]XU Dong-Yan. Study on the Morphological Characteristic of the Wind-damaged Slash in the Restorable Community of Jinyun Mountain Nature Reserve[J]. Plant Science Journal, 2007, 25(2): 158-162.
    [7]WANG Yong, LIU Yi-Fei, LIU Song-Bai, HUANG Hong-Wen. Ex situ Conservation of Plantago fengdouensis, an Endemic and Endangered Species within the Water-level-fluctuation Zone in Three Gorges Reservoir of Changjiang River[J]. Plant Science Journal, 2006, 24(6): 574-578.
    [8]WANG Yong, WU Jin-Qing, TAO Yong, LI Zuo-Zhou, HUANG Hong-Wen. Natural Distribution and Ex Situ Conservation of Endemic Species Myricaria laxiflora in Water-level-fluctuation Zone within Three-Gorges Reservoir Area of Changjiang River[J]. Plant Science Journal, 2003, 21(5): 415-422.
    [9]SHI Sheng-You, SHANG Jin, TIAN Hai-Yan, LI Xu-Guang. Distribution Pattern and Dynamics of Dominant Population in the Progression of Ecological Restoration of Evergreen Broadleaved Forest after Wind-damage in Jinyun Mountain[J]. Plant Science Journal, 2003, 21(4): 321-326.
    [10]Zhao Jiarong, Feng Shunliang, Chen Lu, Ni Xueming, Ao Binghua. A STUDY ON EX-SITU CONSERVATION OF THE RARE PLANT S HYGRORYZA ARISTATA[J]. Plant Science Journal, 1998, 16(1): 93-95.
  • Cited by

    Periodical cited type(7)

    1. 郭舒艳,靳含,温馨,张佳丽,朱琳,苏齐针,杨颖,边媛. 生态保护红线划定下的极小种群野生植物保护研究. 中国野生植物资源. 2024(12): 107-116+123 .
    2. 孙中元,孙传涛,孙超,吕少杰,赵怡康. 烟台沿海防护林体系盐桦两年生苗造林试验初探. 山东林业科技. 2023(02): 50-54 .
    3. 欧阳子龙,张磊,苏大宏,蒙奕奕,唐健民,贾湘璐,余惠英,龚理. 珍稀濒危植物迁地保护与园林应用——以南宁植物园为例. 广西科学院学报. 2023(04): 412-425 .
    4. 安红婧,王发春,周毛措,周碧瑶,胡樱,贾慧萍,王慧春. 极小种群植物研究进展. 安徽农学通报. 2022(06): 38-40 .
    5. 王爽,吕霞. 外源ABA对干旱胁迫及复水下弥勒苣苔生长的影响. 黑龙江农业科学. 2022(06): 67-71 .
    6. 许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展. 生物多样性. 2022(10): 84-105 .
    7. 黄继红,臧润国. 中国植物多样性保护现状与展望. 陆地生态系统与保护学报. 2021(01): 66-74 .

    Other cited types(5)

Catalog

    Article views (565) PDF downloads (2874) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return