Citation: | Ma Qiong, Xiang Jian-Wei, Mou Ruo-Lan, Deng La-Qing, Wang Yun, Zhou Ming. Expression and photochemical properties of cyanobacteriochrome Alr1966GAF2 and its mutants[J]. Plant Science Journal, 2020, 38(4): 551-557. DOI: 10.11913/PSJ.2095-0837.2020.40551 |
[1] |
Sun YF, Xu JG, Tang K, Miao D, Gärtner W, et al. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin[J]. Photochem Photobiol, 2014, 13(5):757-763.
|
[2] |
Fushimi K, Enomoto G, Ikeuchi M, Narikawa R. Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis[J]. Photochem Photobiol, 2017, 93(3):681-691.
|
[3] |
Ma Q, Zheng XJ, Zhou Z, Zhou M. Fluorescence spectra properties of All4261 binding with phycocyanobilin in E. coli[J]. J Appl Spectrosc, 2014, 81(3):437-441.
|
[4] |
Sato M, Ikeuchi M. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina[J]. Sci Rep, 2015, 7950(5):1-10.
|
[5] |
Fushimi K, Nakajima T, Aono Y, Yamamoto T, Win NN, et al. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochromeAM1_C0023g2 that binds not only phycocyanobilin but also biliverdin[J]. Front Microbiol, 2016, 26(7):1-12.
|
[6] |
Rumyantsev KA, Shcherbakova DM, Zakharova NI, Verkhusha VV, Turoverov KK. Design of near-Infrared single-domain fluorescent protein GAF-FP based on bacterial phytochrome[J]. Cell Tissue Biol, 2017, 11(1):16-26.
|
[7] |
Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, et al. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic cre-reporter rat, and other neuronal studies[J]. J Neurosci Meth, 2017, 284:1-14.
|
[8] |
Tang K, Ding WL, Höppner A, Zhao C, Zhang L, et al. The terminal phycobilisome emitter, LCM:A light-harvesting pigment with a phytochrome chromophore[J]. Proc Natl Acad Sci USA, 2015, 112(52):15880-15885.
|
[9] |
Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, et al. Fused-gene approach to photoswitchable and fluorescent bili-proteins[J]. Angew Chem Int Edit, 2010, 49(32):5456-5458.
|
[10] |
Reichhart E, Ingles-Prieto A, Tichy AM, McKenzie C, Janovjak H, et al. A phytochrome sensory domain permits receptor activation by red light[J]. Angew Chem Int Edit, 2016, 55(21):6339-6342.
|
[11] |
Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. Optogenetic protein clustering and signaling activation in mammalian cells[J]. Nat methods, 2013, 10(3):249-253.
|
[12] |
王晓辉. 增强型绿色荧光蛋白在DH5α大肠杆菌中的表达[J]. 食品科学, 2010, 31(21):200-203.
Wang XH. Expression of enhanced green fluorescent protein in DH5α[J]. Food science, 2011, 31(21):200-203.
|
[13] |
Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light[J]. Nat Commun, 2019, 10:1129.
|
[14] |
Bugaj LJ, Spelke DP, Mesuda CK. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering[J]. Nat Commun, 2015, 6:6898.
|
[15] |
Xu ZQ, Han JX, Tang QY, Ding WL, Miao D, et al. Far-red light photoacclimation:Chromophorylation of FR induced α- and β-subunits of allophycocyanin[J]. Biochimica et Biophysica Acta, 2016, 1857(9):1607-1616.
|
[16] |
马涛, 姚明月, 刘延琳. 酿酒酵母APAl的定点突变以及与增强型绿色荧光蛋白EGFP基因的共表达[J]. 食品科学, 2015, 36(23):200-203.
Ma T, Yao MY, Liu YL. Site-directed mutagenesis of Saccharomyces cerevisiae APA1 and co-expression with EGFP[J]. Food science, 2015, 36(23):200-203.
|