Advance Search
Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050
Citation: Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050

Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31860046).

More Information
  • Received Date: June 17, 2020
  • Revised Date: September 29, 2020
  • Available Online: October 31, 2022
  • Published Date: February 27, 2021
  • We explored how Batrachium bungei (Steud.) L. Liou has adapted to extreme high-altitude environments. We used transcriptome sequencing and bioinformatics analysis of seven populations of B. bungei (ML, MZ, WQ, YH, YBJ, XB, ZR). Based on Pearson correlation analysis and principal component analysis (PCA), results showed that the gene expression of each population was highly similar. Differential gene enrichment analysis showed that phenylpropanoid biosynthesis was significantly enriched in five different groups. In addition, flavonoid biosynthesis, carotenoid biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, plant hormone signaling transduction, MAPK signaling pathway, and plant-pathogen interaction were significantly enriched. Compared with low-altitude populations, flavonoid biosynthesis genes (HHT1, HCT, F3'H, CHS, CYP73A, CCOAOMT5, CYP98A) were significantly up-regulated in the high-altitude populations, and their expression levels were significantly higher than those in the low-altitude (MZ) population. These results indicate that B. bungei adapted to the high-altitude environment of the Qinghai-Tibet Plateau mainly through multi-pathway participation and the regulation and expression of key genes.
  • [1]
    Zhang T, Qiao Q, Novikova PY, Qia Wang, Yue JP, et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude[J]. Proc Natl Acad Sci USA, 2019, 116(14):7137-7146.
    [2]
    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63.
    [3]
    Stark R, Grzelak M, Hadfield J. RNA sequencing:the teenage years[J]. Nat Rev Genet, 2019, 20(11):631-656.
    [4]
    Mutz KO, Heilkenbrinker A, Lonne M, Walter JG, Stahl F, et al. Transcriptome analysis using next-generation sequencing[J]. Curr Opin Biotechnol, 2013, 24(1):22-30.
    [5]
    Sharma R, Singh G, Bhattacharya S, Singh A. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress[J]. PLoS One, 2018, 13(9):e203266.
    [6]
    Yang X, Zhao T, Rao P, Gao K, Yang X, et al. Transcriptome profiling of Populus tomentosa under cold stress[J]. Ind Crops Prod, 2019, 135:283-293.
    [7]
    Xing S, Tao C, Song Z, Liu W, Yan J, et al. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius[J]. Plant Mol Biol, 2018, 97(6):489-506.
    [8]
    Li Q, Qin Y, Hu X, Li GC, Ding HY, et al. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.)[J]. Sci Rep, 2020, 10(1):5411.
    [9]
    Zhang M, Hong LZ, Gu MF, Wu CD, Zhang G. Transcriptome analyses revealed molecular responses of Cynanchum auriculatum leaves to saline stress[J]. Sci Rep, 2020, 10(1):449.
    [10]
    Wang F, Xu Z, Fan X, Zhou Q, Cao J, et al. Transcriptome analysis reveals complex molecular mechanisms underlying UV tolerance of wheat (Triticum aestivum L.)[J]. J Agric Food Chem, 2019, 67(2):563-577.
    [11]
    Du J, Wang S, He C, Zhou B, Ruan YL, et al. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis[J]. J Exp Bot, 2017, 68(8):1955-1972.
    [12]
    Soltani HM, Sadat NS, Shariati JV, Amiripour M. Compa-rative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L.[J]. Sci Rep, 2018, 8(1):13405.
    [13]
    Lei ZX, Zhou CH, Ji XY, Wei G, Huang YC, et al. Transcriptome analysis reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations[J]. Sci Rep, 2018, 8(1):6373.
    [14]
    Ma L, Sun XD, Kong XX, Valero GJ, Li X, et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau[J]. J Proteomics, 2015, 112:63-82.
    [15]
    Qiao Q, Wang Q, Han X, Guan YL, Sun H, et al. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau[J]. Sci Rep, 2016, 6(1):21729.
    [16]
    Yang YQ, Li X, Kong XX, Ma L, Hu XY, et al. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau[J]. Funct Integr Genomics, 2015, 15(3):295-307.
    [17]
    Wang YH, Chen JM, Xu C, Liu X,Wang QF. Population genetic structure of an aquatic herb Batrachium bungei(Ranuculaceae) in the Hengduan Mountains of China[J]. Aquat Bot, 2010, 92(3):221-225.
    [18]
    Chen JM, Du ZY, Yuan YY, Wang QF. Phylogeography of an alpine aquatic herb Ranunculus bungei (Ranuncula-ceae) on the Qinghai-Tibet Plateau[J]. J Syst Evol, 2014, 52(3):313-325.
    [19]
    Chen LY, Zhao SY, Wang QF, Moody ML. Transcriptome sequencing of three Ranunculus species (Ranuncula-ceae) reveals candidate genes in adaptation from terrestrial to aquatic habitats[J]. Sci Rep, 2015, 5:10098.
    [20]
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thomposon DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
    [21]
    Li W, Godzik A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1659.
    [22]
    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.
    [23]
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.
    [24]
    Wang ZB, Yu QB, Shen WX, Zhao XC, Mohtar CA, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J]. BMC Plant Biol, 2018, 18(1):189.
    [25]
    Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling[J]. Physiol Plant, 2010, 138(4):405-413.
    [26]
    Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, et al. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress[J]. Molecules, 2019, 24(13):2452.
    [27]
    Llorente B. Regulation of carotenoid biosynthesis in photosynthetic organs[J]. Subcell Biochem, 2016, 79:141-160.
    [28]
    Zeng XQ, Yuan HG, Dong XK, Peng M, Jing XY, et al. Genome-wide dissection of co-selected UV-B responsive pathways in the UV-B adaptation of qingke[J]. Mol Plant, 2020, 13(1):112-127.
    [29]
    Gong ZZ, Xiong LM, Shi HZ, Yang SH, Xu GH, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5):635-674.
    [30]
    Wasternack C. Jasmonates:an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Ann Bot, 2007, 100(4):681-697.
    [31]
    Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M, et al. Stress-induced flavonoid biosynthesis and the antio-xidant machinery of plants[J]. Plant Signal Behav, 2011, 6(5):709-711.
    [32]
    Falcone FM, Rius SP, Casati P. Flavonoids:biosynthesis, biological functions, and biotechnological applications[J]. Front Plant Sci, 2012, 3:222.
    [33]
    Kirk RAH, Plunkett B, Hall M, McFhie T, Allan AC, et al. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica)[J]. Plant Cell Environ, 2018, 41(3):675-688.
    [34]
    Zhang Q, Liu M, Ruan J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J]. BMC Plant Biol, 2017, 17(1):64.
  • Related Articles

    [1]Chen Chunli, Wang Bin, Wang En, Yu Haiqiong, Wang Jia'nan, Dong Jingzhou, Zhang Yanjun. Effects of selenium on harmful element absorption and flavonoid content in Epimedium sagittatum (Sieb. et Zucc.) Maxim[J]. Plant Science Journal, 2024, 42(6): 800-805. DOI: 10.11913/PSJ.2095-0837.23321
    [2]Chen Yong, Li Jiajie, Zheng Danjing, Luo Shukai, Meng Shiyuan, Qian Lei, Dai Seping. Composition and content of anthocyanins and flavonoids in purple-red, pink, and white petals of Bauhinia variegata L.[J]. Plant Science Journal, 2024, 42(1): 96-103. DOI: 10.11913/PSJ.2095-0837.23249
    [3]Xin Jia, Sun Heng, Liu Juan, Yang Dong, Deng Xian-Bao, Yang Mei. Advances in the identification, function, and application of flavonoids in Nelumbo[J]. Plant Science Journal, 2023, 41(3): 400-410. DOI: 10.11913/PSJ.2095-0837.22194
    [4]LIANG Jia-Wen, LIU Ai-Jie, MA Bing-Xin, WANG You-Wei. Simultaneous Determination of Six Flavonoid Compounds in Lotus Leaves by High Performance Liquid Chromatography[J]. Plant Science Journal, 2015, 33(6): 861-866. DOI: 10.11913/PSJ.2095-0837.2015.60861
    [5]LIU Xian-Qing, ZHANG Hong-Yan. Determination of Flavonoids from Navel Orange (Citrus sinensis) Fruits by HPLC-Q-TOF/MS[J]. Plant Science Journal, 2014, 32(6): 638-644. DOI: 10.11913/PSJ.2095-0837.2014.60638
    [6]MA Ting-Ting, WANG Zhong-Zhong, NIU Dong-Ling. Optimization of an Extraction and Purification Method of Total Flavonoids from Lycium barbarum Leaves[J]. Plant Science Journal, 2012, 30(6): 644-650. DOI: 10.3724/SP.J.1142.2012.60644
    [7]GAO Xiang, ZHANG Hua-Feng, LU Da-Yan, WANG Ying. The Relationship between the Contents of Flavonoids and Leaf Morphology in Epimedium Species[J]. Plant Science Journal, 2009, 27(2): 184-187.
    [8]YANG Ying, HE Feng, JI Jia-Xing, LEI Jing, CHEN Xue-Hong, YU Long-Jiang. The Effect of Precursor Feeding on Flavonoids Biosynthesis in Cell Suspension Cultures of Glycyrrhiza inflata Bat.[J]. Plant Science Journal, 2007, 25(5): 484-489.
    [9]MA Jin-E, JIN Ze-Xin, LI Jun-Min. Analysis of Flavonoids in Endangered Plant Sinocalycanthus chinensis Using Thin Layer Chromatography[J]. Plant Science Journal, 2007, 25(4): 366-370.
    [10]SI Ying, WANG Wei, GONG Fu-Jun, DING Shi-Dong, WANG You-Wei. Study on the Total Flavonoids Content in Leaves of Glyptostrobus pensilis[J]. Plant Science Journal, 2003, 21(6): 547-549.
  • Cited by

    Periodical cited type(1)

    1. 陈忠海,刘泰龙,陈飞飞,吴玄峰,赵宁,刘星. 青藏高原水毛茛基于转录组测序的SSR和SNP特征分析. 环境生态学. 2021(11): 53-58 .

    Other cited types(4)

Catalog

    Article views (637) PDF downloads (464) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return