Advance Search
Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054
Citation: Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054

Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31960409

More Information
  • Received Date: July 20, 2021
  • Revised Date: September 14, 2021
  • Available Online: October 31, 2022
  • Published Date: February 27, 2022
  • The reverse transcriptase gene (RT) sequences of Ty1-copia-like (Type 1) and Ty3-gypsy-like retrotransposons (Type 2) were amplified and isolated from the Arachis ipaensis Krapov. et W. C. Greg. with BB genome by degenerate polymerase chain reaction (PCR). Sequence characteristics, diversity, phylogenetic relationships, and transcriptional activity were then analyzed. Results showed that the target bands for types 1 and 2 were 260 bp and 430 bp in size, respectively. 23 sequences of type 1 retrotransposons and 32 sequences of type 2 retrotransposons were obtained. Sequence lengths of type 1 and type 2 ranged from 262 to 266 bp and from 395 to 435 bp, respectively. The proportion of AT content in type 1 and type 2 ranged from 61.60% to 69.17% and from 55.79% to 61.34%, respectively. Similarity between nucleotide sequences in type 1 and type 2 ranged from 52.5% to 98.9% and from 45.0% to 98.8%, respectively. The similarity between amino acid sequences of type 1 and type 2 ranged from 39.8% to 100% and from 9.0% to 97.2%, respectively. The heterogeneity of type 2 was higher than that of type 1. There were three and 15 nonsense mutations in type 1 and type 2, respectively. The incidence of nonsense mutations in type 2 was much higher than that in type 1. The conserved motifs of type 1 were highly conserved, while the conserved motifs of type 2 showed a certain degree of variation. The protein tertiary structures were similar in overall configuration. Type 2 had more differences in protein structure than type 1. Based on cluster analysis, type 1 and type 2 were divided into five and six families, respectively. The phylogenetic tree showed that type 1 and type 2 were divided into four and 11 classes, respectively, but type 2 sequence categories and diversity were significantly higher than that of type 1. Several type 1 and 2 RT gene sequences were closely related to the RT gene sequences of other species, indicating possible horizontal transmission of retrotransposons. When searching the peanut EST database, one type 1 and seven type 2 sequences from the A.ipaensis BB genome showed transcriptional activity. The type 2 retrotransposons showed greater transcriptional activity than the type 1 retrotransposons. This study not only provides sequences for the isolation of full-length LTR retrotransposons and for studies on their transcriptional activity and function, but also lays the foundation for the development of molecular markers based on LTR retrotransposons in the Arachis genus.
  • [1]
    熊发前, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 等. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J]. 作物学报, 2010, 36(12):2055-2061.

    Xiong FQ, Jiang J, Zhong RC, Han ZQ, He LQ, et al. Application of SCoT molecular markers in genus Arachis[J]. Acta Agronomica Sinica, 36(12):2055-2061.
    [2]
    Xiong FQ, Zhong RC, Han ZQ, Jiang J, He LQ, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes[J]. Mol Biol Rep, 2011, 38(5):3487-3494.
    [3]
    Kumar A, Pearce SR, McLean K, Harrison G, HeslopHarrison JS, et al. The Tyl-copia group of retrotransposons in plants:genomic organisation, evolution and use as molecular markers[J]. Genetica, 1997, 100:205-217.
    [4]
    Kumar A, Bennetzen JL. Plant retrotransposons[J]. Annu Rev Genet, 1999, 33:479-532.
    [5]
    Feschotte C, Jiang N, Wessler SR. Plant transposable elements:where genetics meets genomics[J]. Nat Rev Genet, 2002, 3(5):329-341.
    [6]
    Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations[J]. Mol Ecol Resour, 2013, 13(5):765-775.
    [7]
    Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequencespecific amplification polymorphisms (S-SAP)[J]. Mol Gen Genet, 1997, 253(6):687-694.
    [8]
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques[J]. Theor Appl Genet, 1999, 98(5):704-711.
    [9]
    Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene[J]. Theor Appl Genet, 2004, 108(8):1492-1502.
    [10]
    Gowda MVC, Bhat RS, Motagi BN, Sujay V, Kumari V, Sujatha B. Association of high-frequency origin of late leaf spot resistance mutants with AhMITE1 transposition in peanut[J]. Plant Breed, 2010, 129(5):567-569.
    [11]
    Gowda MVC, Bhat RS, Sujay V, Kusuma P, Varshakumari, et al. Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.)[J]. Plant Syst Evol, 2011, 291(3-4):153-158.
    [12]
    Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, et al. Characterization of active miniature inverted-repeat transposable elements in the peanut genome[J]. Theor Appl Genet, 2012, 124(8):1429-1438.
    [13]
    Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut[J]. BMC Plant Biol, 2012, 12:80.
    [14]
    Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes[J]. DNA Res, 2013, 20(2):173-184.
    [15]
    Mondal S, Hande P, Badigannavar AM. Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut[J]. J Phytopathol, 2014, 162(7-8):548-552.
    [16]
    Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, et al. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.)[J]. PLoS One, 2017, 12(10):e0186113.
    [17]
    Gayathri M, Shirasawa K, Varshney RK, Pandey MK, Bhat RS. Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.)[J]. BMC Res Notes, 2018, 11:10.
    [18]
    王洁, 李双铃, 王辉, 石延茂, 任艳, 等. 利用AhMITE1转座子分子标记鉴定花生F1代杂种[J]. 花生学报, 2012, 41(2):8-12.

    Wang J, Li SL, Wang H, Shi YM, Ren Y, et al. Identification of peanut F1 hybrid using AhMITE1 transposable element marker[J]. Journal of Peanut Science, 2012, 41(2):8-12.
    [19]
    王辉, 李双铃, 任艳, 许梦琦, 石延茂, 等. 利用AhMITE转座子分子标记研究花生栽培种及高世代材料的亲缘关系[J]. 农业生物技术学报, 2013, 21(10):1176-1184.

    Wang H, Li SL, Ren Y, Xu MQ, Shi YM, et al. Genetic relationship of peanut (Arachis hypogaea L.) varieties and advanced generation lines evaluated by AhMITE transposable markers[J]. Journal of Agricultural Biotechnology, 2013, 21(10):1176-1184.
    [20]
    尹亮, 任艳, 石延茂, 李双铃, 王辉, 袁美. 利用AhMITE1转座子分子标记鉴定栽培花生杂交F1代种子真伪[J]. 山东农业科学, 2015, 47(12):1-5.

    Yin L, Ren Y, Shi YM, Li SL, Wang H, Yuan M. Identification of true F1 hybrid seeds using AhMITE1 markers in cultivated peanut[J]. Shandong Agricultural Sciences, 2015, 47(12):1-5.
    [21]
    许梦琦, 李双铃, 任艳, 石延茂, 王辉, 等. 花生作图亲本间分子标记的多态性分析[J]. 湖北农业科学, 2015, 54(11):2763-2766.

    Xu MQ, Li SL, Ren Y, Shi YM, Wang H, et al. Polymorphic analysis of molecular markers between mapping parents in peanut[J]. Hubei Agricultural Sciences, 2015, 54(11):2763-2766.
    [22]
    吴琪, 曹广英, 尹亮, 唐月异, 王秀贞, 等. 利用AhMITE转座子分子标记鉴定花生杂交F1 代真假杂种[J]. 花生学报, 2017, 46(3):48-53.

    Wu Q, Cao GY, Yin L, Tang YY, Wang XZ, et al. Identification of peanut hybrid F1 with AhMITE markers[J]. Journal of Peanut Science, 46(3):48-53.
    [23]
    刘婷, 王传堂, 唐月异, 王志伟, 孙全喜, 等. 利用近红外技术和转座子标记鉴定花生杂交F1 真杂种[J]. 分子植物育种, 2017, 15(9):3592-3598.

    Liu T, Wang CT, Tang YY, Wang ZW, Sun QX, et al. Identification of true F1 hybrids in peanut with near infrared spectroscopy and transposon markers[J]. Molecular Plant Breeding, 2017, 15(9):3592-3598.
    [24]
    Nielen S, Campos-Fonseca F, Leal-Bertioli S, Guimaraes P, Seijo G, et al. FIDEL-a retrovirus-like retrotransposon and its distinct evolutionary histories in the A-and B-genome components of cultivated peanut[J]. Chromosome Res, 2010, 18(2):227-246.
    [25]
    Nielen S, Vidigal BS, Leal-Bertioli SCM, Ratnaparkhe M, Paterson AH, et al. Matita, a new retroelement from peanut:characterization and evolutionary context in the light of the Arachis A-B genome divergence[J]. Mol Genet and Genomics, 2012, 287(1):21-38.
    [26]
    熊发前, 刘俊仙, 贺梁琼, 韩柱强, 黄志鹏, 等. 花生LTR和MITE转座子及其分子标记开发利用研究进展[J]. 分子植物育种, 2017, 15(2):640-647.

    Xiong FQ, Liu JX, He LQ, Han ZQ, Huang ZP, et al. Recent advances on the development and utilization of molecular markers based on LTR retrotransposons and MITE transposons from peanut (Arachis hypogaea L.)[J]. Molecular Plant Breeding, 2017, 15(2):640-647.
    [27]
    熊发前, 刘俊仙, 刘菁, 贺梁琼, 蒋菁, 等. 花生DNA的五种改良CTAB提取方法的比较分析及其应用[J]. 分子植物育种, 2019, 17(7):2207-2216.

    Xiong FQ, Liu JX, Liu J, He LQ, Jiang J, et al. Comparative analysis and application of five improved CTAB extraction methods for peanut DNA[J]. Molecular Plant Breeding, 2019, 17(7):2207-2216.
    [28]
    Kumekawa N, Ohtsubo E, Ohtsubo H. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom[J]. Genes Genet Syst, 1999, 74(6):299-307.
    [29]
    阳太亿, 刘俊仙, 刘菁, 蒋菁, 韩柱强, 等. 四倍体野生种花生Ty1-copia类逆转座子逆转录酶基因的克隆与分析[J]. 山东农业科学, 2019, 51(9):9-20.

    Yang TY, Liu JX, Liu J, Jiang J, Han ZQ, et al. Cloning and analysis of reverse transcriptase of Ty1-copia-like retrotransposons in Arachis monticola[J]. Shandong Agricultural Sciences, 51(9):9-20.
    [30]
    郭晓芳, 贾举庆, 张晓军, 张春来, 张美俊, 等. 裸燕麦Ty1copia类反转录转座子反转录酶序列的分离、鉴定与分析[J]. 植物科学学报, 2018, 36(5):721-728.

    Guo XF, Jia JQ, Zhang XJ, Zhang CL, Zhang MJ, et al. Isolation, identification and characterization of reverse transcriptase sequence from Ty1-copia retrotransposon in Avena nuda[J]. Plant Science Journal, 2018, 36(5):721-728.
    [31]
    张文波, 陈凌, 李雪辉, 白玉娥, 林晓飞. 兴安落叶松Ty3gypsy类逆转座子逆转录酶的多样性分析[J]. 分子植物育种, 2016, 14(5):1098-1106.

    Zhang WB, Chen L, Li XH, Bai YE, Lin XF. Sequence diversity analysis of reverse transcriptases of Ty3-gypsy-like retrotransposons in Larix gmelinii[J]. Molecular Plant Breeding, 2016, 14(5):1098-1106.
    [32]
    Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut[J]. Nat Genet, 2016, 48(4):438-446.
    [33]
    Lu Q, Li HF, Hong YB, Zhang GQ, Wen SJ, et al. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis)[J]. Front Plant Sci, 2018, 9:604.
    [34]
    Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR. Copia-like retrotransposons are ubiquitous among plants[J]. Proc Natl Acad Sci USA, 1992, 89(15):7124-7128.
  • Related Articles

    [1]LIU Shao-Xiong, SHI Hui-Jun, XU Yan-Qin. Morphological Comparison of the Epimedium franchetii Stearn Species Complex Based on Population Observation and Implications for Taxonomy[J]. Plant Science Journal, 2016, 34(3): 325-339. DOI: 10.11913/PSJ.2095-0837.2016.30325
    [2]PAN Hong, YANG Yang, TANG Yu-Hong. Morphological Description and Taxonomy of Compsopogon sp. (Compsopogonaceae,Rhodophyta) from Guangdong Province[J]. Plant Science Journal, 2013, 31(6): 540-544. DOI: 10.3724/SP.J.1142.2013.60540
    [3]WANG Liang-Min, ZHANG Yu-Jun. Discussion on the Taxonomic Position and Nomenclature of Liaodong Oak(Fagaceae)[J]. Plant Science Journal, 2011, 29(6): 749-754.
    [4]ZHAO Neng, LIU Jun, GONG Gu-Tang. On the Classification and Distribution of the Subfamily Populoideae(Salicaceae)[J]. Plant Science Journal, 2009, 27(1): 23-40.
    [5]Wang Zhaohui, Lu Songhui, Chen Jufang, Xu Ning, Qi Yuzao. TAXONOMIC STUDIES ON RED TIDE CAUSATIVE ALGAE ON THE GUANGDONG COAST,SOUTH CHINA SEA[J]. Plant Science Journal, 1998, 16(4): 310-314.
    [6]Fang Deqiu. CITRUS TAXONOMY——PAST, PRESENT AND FUTURE[J]. Plant Science Journal, 1993, 11(4): 375-382.
    [7]Fang Deqiu, Zhang Wencai. STUDIES ON THE TAXONOMY AND EVOLUTION OF MANDARINS IN CHINA BY ISOZYMES[J]. Plant Science Journal, 1992, 10(4): 305-312.
    [8]Ding Bingyang, Fang Yunyi. CLASSIFICATION AND DISTRIBUTION STUDIES ON HYDROCHARITACEAE FROM ZHEJIANG PROVINCE[J]. Plant Science Journal, 1991, 9(1): 63-69.
    [9]Shi Zhixin. A STUDY OF COLACIUM EHR. IN LAKE DONG-HU, WUHAN Ⅰ. MORPHOLOGY AND TAXONOMY[J]. Plant Science Journal, 1988, 6(4): 335-338.
    [10]Yu Yongnian. SYSTEMATICS AND TAXONOMY IN THE OOMYCETES[J]. Plant Science Journal, 1986, 4(4): 398-410.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return