Advance Search
He Bin, Wang Yu-Dan, Song Shi-Wei. Research progress on miR396-GRF module regulating plant stress response[J]. Plant Science Journal, 2022, 40(3): 437-447. DOI: 10.11913/PSJ.2095-0837.2022.30437
Citation: He Bin, Wang Yu-Dan, Song Shi-Wei. Research progress on miR396-GRF module regulating plant stress response[J]. Plant Science Journal, 2022, 40(3): 437-447. DOI: 10.11913/PSJ.2095-0837.2022.30437

Research progress on miR396-GRF module regulating plant stress response

Funds: 

This work was supported by grants from the Research and Development Program in Key Areas of Guangdong Province (2020B0202010006), National Key Research and Development Program of China (2019YFD1001901), and Modern Agricultural Industry Common Key Technology Research and Development Innovation Team Project of Guangdong Province (2021KJ131).

undefined

undefined

More Information
  • Received Date: December 01, 2021
  • Revised Date: March 02, 2022
  • Available Online: October 31, 2022
  • Published Date: June 27, 2022
  • The miR396-GRF module is a novel and efficient plant growth and development regulatory module. In this module, miR396 negatively regulates growth-regulating factor (GRF), affects the signal transduction pathway in the process of plant growth and development, and participates in the response of plants to abiotic stress (e.g., drought, salt damage, temperature, and UV-B radiation) and biological stress (e.g., cyst nematodes and pathogens). In this review, we discuss the regulatory network of the miR396-GRF module and the response mechanism involved in plant stress resistance, and further discuss related research trends and existing problems to provide a theoretical reference for future research on GRF.
  • [1]
    许涛,夏冬健,万菁,姜书涵,宋江华. F-box蛋白参与植物逆境胁迫研究进展[J].生物技术通报, 2021, 37(12):205-211.

    Xu T, Xia DJ, Wan J, Jiang SH, Song JH. Research progress of f-box protein involved inplantstress[J]. Biotechnology Bulletin, 2021, 37(12):205-211.
    [2]
    岳玲琦,邢巧娟,张晓兰,梁雪,王乾,齐红岩.光敏色素互作因子在植物抵御逆境胁迫中的作用研究进展[J].园艺学报, 2021, 48(4):632-646.

    Yue LQ, Xing QJ, Zhang XL, Liang X, Wang Q, Qi HY. Research progress on the effect of phytochrome-interacting factors in plant resistance to abiotic stress[J]. Acta Horticulturae Sinica, 2021, 48(4):632-646.
    [3]
    Jones-Rhoades MW, Bartel DP. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell, 2004, 14(6):787-799.
    [4]
    Li WX, Oono Y, Zhu J, He XJ, Wu JM, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
    [5]
    Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, et al. MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant J, 2013, 74(6):920-934.
    [6]
    Merchan F, Boualem A, Crespi M, Frugier F. Plantpolycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins[J]. Genome Biol, 2009, 10(12):136-136.
    [7]
    翟俊淼,栾雨时,崔娟娟. miR396基因家族的进化及功能分析[J].植物研究, 2013, 33(4):421-428.

    Zhai JM, Luan YS, Cui JJ. Evolution and function analysis of miR396 gene family[J]. Bull Bot Res, 2013, 33(4):421-428.
    [8]
    Knaap EVD, Kim JH, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiol, 2000, 122(3):695-704.
    [9]
    Wu WQ, Li J, Wang Q, Lv KW, Du K, et al. Growth-regulating factor 5(GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar[J]. New Phytol, 2021, 230(2):612-628.
    [10]
    Liu D, Song Y, Chen Z, Yu D. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis[J]. Physiol Plant, 2009, 136(2):223-236.
    [11]
    Liang G, He H, Li Y,Wang F, Yu D. Molecular mechanism of miR396 mediating pistil development in Arabidopsis[J]. Plant Physiol, 2014, 164(1):249-258.
    [12]
    Liu J, Hua W, Yang HL, Zhan GM, Li RJ, et al. The[STXFX]BnGRF2 gene (GRF2-like[STXFZ] gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. J Exp Bot, 2012, 63(10):3727-3740.
    [13]
    Li S, Tian Y, Wu K, Ye YF, Yu JP, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720):595.
    [14]
    Sun P, Zhang WH, Wang Y, He Q, Shu F, et al.[STXFX]OsGRF4[STXFZ] controls grain shape, panicle lengthand seed shattering in rice[J]. J Integr Plant Biol, 2016, 58(10):836-847.
    [15]
    Kim JH. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Reports, 2019, 52(4):227-238.
    [16]
    Chen X, Jiang LG, Zheng JS, Chen FY, Wang TS, et al. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice[J]. J Exp Bot, 2019, 70(15):3851-3866.
    [17]
    Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Palatnik JF. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots[J]. Plant Cell, 2015, 27(12):3354-3366.
    [18]
    Horiguchi G, Kim GT, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant J, 2005, 43(1):68-78.
    [19]
    Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, et al. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley[J]. Plant Physiol, 2010, 154(4):1616-1632.
    [20]
    Wu L, Zhang D, Xue M, Qian J, He Y, Wang S. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to a reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.
    [21]
    Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression:an overview of nuclear functions[J]. Int J Mol Sci, 2016, 17(10):1712-1712.
    [22]
    Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions[J]. PLoS Genetics, 2012, 8(1):e1002419.
    [23]
    Gonzalez N, Bodt SD, Sulpice R, Jikumaru Y, Chae E, et al. Increased leaf size:different means to an end[J]. Plant Physiol, 2010, 153(3):1261-1279.
    [24]
    Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010, 137(1):103-112.
    [25]
    Kuijt SJH, Greco R, Agalou A, Shao J, Heon CCJ, et al. Interaction between the GROWTH-REGULATING FACTOR and[STXFX]KNOTTED1-LIKE HOMEOBOX[STXFZ]families of transcription factors1[W][J]. Plant Physiol, 2014, 164(4):1952-1966.
    [26]
    Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat Biotechnol, 2020, 38(11):1-6.
    [27]
    Che RH, Tong HN, Shi BH, Liu YQ, Fang SR, et al. Control of grain size and rice yield by[STXFX]GL2-[STXFZ]mediated brassinosteroid responses[J]. Nat Plants, 2016, 2(1):15195.
    [28]
    Kim JH, Choi DS, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant J, 2003, 36(1):94-104.
    [29]
    Kaur G, Author B. Molecular responses to drought stress in plants[J]. Biol Plantarum, 2017, 61(2):201-209.
    [30]
    杨凤玺. MiR396在烟草中的功能分析[D].北京:中国科学院研究生院, 2009:21-36.
    [31]
    Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Rep, 2015, 34(12):2013-2025.
    [32]
    Inga H, Jennifer S, Corinna W, Tatjana G, Ingo V, et al. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase[J]. J Exp Bot, 2012, 63(3):1445-1459.
    [33]
    Fracasso A, Vallino M, Staropoli A, Vinale F, Carra A. Increased water use efficiency in miR396-downregulated tomato plants[J]. Plant Sci, 2021, 303:110729.
    [34]
    Liu W, Zhou Y, Li X, Wang X, Li H.Tissue-specific regulation of[STXFX]Gma-miR396[STXFZ] Family on coordinating development and low water availability responses[J]. Front Plant Sci, 2017, 8:1112.
    [35]
    Li AL, Wen Z, Yang K, Wen XP, et al. Conserved miR396b-GRF regulation is involved in abiotic stress responses in pitaya (Hylocereus polyrhizus)[J]. Int J Mol Sci, 2019, 20(10):2501.
    [36]
    Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant saltstress responses[J]. New Phytol, 2018, 217(2):523-539.
    [37]
    潘凌云,马家冀,李建民,尹兵兵,付畅.植物盐胁迫应答转录因子的研究进展[J].生物工程学报, 2022, 38(1):50-65.

    Pan LY, Ma JJ, Li JM, Yin BB, Fu C.Research progress of salt stress-responsivetranscription factors in plants[J]. Chinese Journal of Biotechnology, 2022, 38(1):50-65.
    [38]
    Liu H, Guo S, Xu Y, Li CH, Zhang ZY, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets[STXFX]OsJMJ706 and OsCR4[STXFZ] [J]. Plant Physiol, 2014, 165(1):160-174.
    [39]
    Guiltinan MJ, Marcotte WRJ, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element[J]. Science, 1990, 250(4978):267-271.
    [40]
    Gao P, Bai X, Yang L, Lv D, Yong L, et al. Over-expression of[STXFX]osa-MIR396c[STXFZ] decreases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001.
    [41]
    Qin Z, Chen J, Jin L, Duns GJ, Ouyang P. Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues[J]. J Nanosci Nanotechnol, 2015, 15(2):1554-1561.
    [42]
    Zhou J, Liu M, Jiang J, Qiao G, Zhou R. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress[J]. Mol Biol Rep, 2012, 39(9):8645-8654.
    [43]
    Yuan S, Zhao J, Li Z, Hu Q, Luo H. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6(1):13.
    [44]
    Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4):1593-1608.
    [45]
    Liu H, Tian X, Li Y, Wu CG, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843.
    [46]
    Lantzouni O, Alkofer A, Falter-Braun P, Claus S. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress[J]. Plant Cell, 2020, 32(4):1018-1034.
    [47]
    Hivrale V, Zheng Y, Puli C, Jagadeeswaran G, Gowdu K, et al. Characterization of drought-and heat-responsive microRNAs in switchgrass[J]. Plant Sci, 2016, 242:214-223.
    [48]
    叶超楠,沈栎阳,方春,曹跃芬,於金生.热胁迫下水稻miR396家族及靶基因OsGRFs的表达研究[J].农业生物技术学报, 2018, 26(3):393-400.

    Ye CN, Shen LY, Fang C, Cao YF, Yu JS. Expression analysis of rice (Oryza sativa) miR396 family and target gene OsGRFs under heat stress[J]. Journal of Agricultural Biotechnology, 2018, 26(3):393-400.
    [49]
    Zhang M, An P, Li H, Wang XL, Zhou JL. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature[J]. Int J Mol Sci, 2019, 20(7):1754.
    [50]
    刘立立,杨进威,姜如云,姜玉梅,李永春,李磊.小麦[STXFX]miR396b[STXFZ]的特征及其在温度胁迫中的表达分析[J].山东农业科学, 2021, 53(7):1-8.

    Liu LL, Yang JW, Jiang RY, Jiang YM, Li YC, Li L. Characteristics and expression profiling of[STXFX]miR396b[STXFZ] in wheat[J]. Shandong Agricultural Sciences, 2021, 53(7):1-8.
    [51]
    Zhao Y, Xie J, Wang S, Xu W, Zhang D. Synonymous mutation in[STXFX]Growth Regulating Factor 15[STXFZ] of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar[J]. J Exp Bot, 2021, 72(12):4502-4519.
    [52]
    Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection[J]. Plant Physiol, 2003, 133(4):1420-1428.
    [53]
    Rizzini L, Favory J, Cloix C, Faggionato D, Hara AO, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025):103-106.
    [54]
    Robson TM, Aphalo PJ. Species-specific effect of UV-B radiation on the temporal pattern of leaf growth[J]. Physiol Plantarum, 2012, 144(2):146-160.
    [55]
    Wargent JJ, Moore JP, Ennos AR, Paul ND. Ultraviolet radiation as a limiting factor in leaf expansion and development[J]. Photochem Photobiol, 2009, 85(1):279-286.
    [56]
    Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Paula C. Repression of GROWTH REGULATING FACTORS by the MicroRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell, 2013, 25(9):3570-3583.
    [57]
    Fina J, Casadevall R, Abdelgawad H, Prinsen E,Casati P. UV-B inhibits leaf growth through changes in GROWTH-REGULATING FACTORS and gibberellin levels[J]. Plant Physiol, 2017, 174(2):1110-1126.
    [58]
    Gomez MS, Ferreyra MLF, Sheridan ML, Sheridan ML, Casati P. Arabidopsis E2Fc is required for the DNA damage response under UV-B radiation epistatically over the microRNA396 and independently of E2Fe[J]. Plant Journal, 2019, 97(4):749-764.
    [59]
    Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves[J]. Plant Signal Behav, 2013, 8(10):e26758.
    [60]
    Czesnick H, Lenhard M. Size control in plants-lessons from leaves and flowers[J]. Cold Spring Harb Perspect in Biol, 2015, 7(8):a019190.
    [61]
    Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Naganand R, Moussa B, Heribert H. Plant immunity:from signaling to epigenetic control of defense[J]. Trends Plant Sci, 2018, 23(9):833-844.
    [62]
    Elmore JM, Griffin BD, Walley JW. Advances in functional proteomics to study interactions[J]. Curr Opin Plant Biol, 2021, 63:102061.
    [63]
    Hewezi T, Maier TR, Nettleton D, Baum TJ. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection[J]. Plant Physiol, 2012, 159(1):321-335.
    [64]
    Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, Segundo BS. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens[J]. Sci Rep, 2017, 7(1):44898.
    [65]
    Noon JB, Hewezi T, Baum TJ. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections[J]. J Exp Bot, 2019, 70(5):1653-1668.
    [66]
    翟俊淼.致病疫霉诱导下番茄小RNA文库构建及sly-miR396的功能特性研究[D].大连:大连理工大学, 2014:29-58.
    [67]
    Chandran V, Wang H, Gao F, Cao XL, Chen YP, et al. MiR396-OsGRFs module balances growth and rice blast disease-resistance[J]. Front Plant Sci, 2019, 9:1999.
    [68]
    Rodriguez RE, Schommer C, Palatnik JF. Control of cell proliferation by microRNAs in plants[J]. Curr Opin Plant Biol, 2016, 34:68-76.
    [69]
    Miao C,Wang D, He R, Liu S, Zhu J. Mutations in[STXFX]MIR396e and MIR396f[STXFZ]increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnol J, 2019, 18(2):491-501.
    [70]
    Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant J, 2014, 79(3):413-426.
  • Related Articles

    [1]Xin Jia, Sun Heng, Liu Juan, Yang Dong, Deng Xian-Bao, Yang Mei. Advances in the identification, function, and application of flavonoids in Nelumbo[J]. Plant Science Journal, 2023, 41(3): 400-410. DOI: 10.11913/PSJ.2095-0837.22194
    [2]Zhao Wan-Li, Zhang Jiao-Lin, Zhang Yong-Jiang, Cao Kun-Fang. Analysis of photosynthesis-water relationship between simple- and compound-leafed leguminous trees[J]. Plant Science Journal, 2019, 37(5): 628-636. DOI: 10.11913/PSJ.2095-0837.2019.50628
    [3]ZHANG Hu, WEN Xiao-Bin, WANG Zhong-Jie, LI Ye-Guang, GENG Ya-Hong. Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification[J]. Plant Science Journal, 2014, 32(6): 645-654. DOI: 10.11913/PSJ.2095-0837.2014.60645
    [4]GUO Yi-Li, TANG Tie-Xin, YANG De-Po, CEN Shan, ZHU Long-Ping, XU Xin-Jun. Polyphenols and Triterpenoids in Rubus aleaefolius Poir.Leaves[J]. Plant Science Journal, 2013, 31(2): 191-197. DOI: 10.3724/SP.J.1142.2013.20191
    [5]MA Jin-E, JIN Ze-Xin, LI Jun-Min. Analysis of Flavonoids in Endangered Plant Sinocalycanthus chinensis Using Thin Layer Chromatography[J]. Plant Science Journal, 2007, 25(4): 366-370.
    [6]XIONG Li, SHENG Xiu-Mei, TANG Hong-Feng, WANG Yuan, LIU Tao, LIU Xi-Ping, LUAN Yong-Cheng. The Impact of Methamidophos to the Activity of Antioxidant Compounds in Chinese Cabbage[J]. Plant Science Journal, 2005, 23(4): 381-384.
    [7]JI Lan-Ju, JI Wen-He, CHEN Gui-Chen, DAI Dong-Hai, YANG Yan-Rong. Determination Compounds of Antihepatitis-haleniaside in Tibet Herb of Halenia ellipitica D. Don[J]. Plant Science Journal, 2004, 22(5): 473-476.
    [8]WAN Shu-Qing, YANG Shu-Juan, JIANG Zhi-Sheng, SHANG Zhi-Zhen, LIU Zhun. Response of Protective Enzyme in Callus of Barnyard Grass under Oxidizing Stress Induced by Polyacetylene Compound[J]. Plant Science Journal, 2004, 22(4): 334-338.
    [9]LI Jun-Min, CHEN Yong-Hui, JIN Ze-Xin, ZHONG Zhang-Cheng. Extraction and Analysis of Flavonoids from Sargentodoxa Cuneata[J]. Plant Science Journal, 2002, 20(2): 157-161.
    [10]LIAO Mao-Chuan, WANG You-Wei, XIAO Pei-Gen. Study on Bioactive Compounds of Leontice kiangnanensis[J]. Plant Science Journal, 2001, 19(6): 513-516.

Catalog

    Article views (711) PDF downloads (282) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return