Citation: | Li Jia, Li Qing. Complete chloroplast genome sequence and analysis of Pinus ponderosa P. Lawson & C. Lawson and Picea pungens Engelm.[J]. Plant Science Journal, 2022, 40(6): 791-800. DOI: 10.11913/PSJ.2095-0837.2022.60791 |
[1] |
Partelli-Feltrin R, Smith AMS, Adams HD, Kolden CA, Johnson DM. Short-and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings[J]. Plant Cell Environ, 2021, 44(3):696-705.
|
[2] |
Çetin M, Çobanoǧlu O. The possibilities of using blue spruce (Picea pungens Engelm.) as a biomonitor by measuring the recent accumulation of Mn in its leaves[J]. Kastamonu Univ J Eng Sci, 2019, 5(1):43-50.
|
[3] |
Montagnoli A, Terzaghi M, Chiatante D, Scippa GS, Lasserre B, Dumroese RK. Ongoing modifications to root system architecture of Pinus ponderosa growing on a sloped site revealed by tree-ring analysis[J]. Dendrochronologia, 2019, 58:125650.
|
[4] |
Remke MJ, Hoang T, Kolb T, Gehring C, Johnson NC, Bowker MA. Familiar soil conditions help Pinus ponderosa seedlings cope with warming and drying climate[J]. Restor Ecol, 2020, 28(S4):S344-S354.
|
[5] |
Breygina M, Maksimov N, Polevova S, Evmenyeva A. Bipolar pollen germination in blue spruce (Picea pungens)[J]. Protoplasma, 2019, 256(4):941-949.
|
[6] |
Tao J, Chen SG, Qin CY, Li QM, Cai JF, et al. Somatic embryogenesis in mature zygotic embryos of Picea pungens[J]. Sci Rep, 2021, 11(1):19072.
|
[7] |
Daniell H, Jin SX, Zhu XG, Gitzendanner MA, Soltis DE,Soltis PS.Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins:history and phylogeny[J]. Plant Biotechnol J, 2021, 19(3):430-447.
|
[8] |
Mower JP, Vickrey TL. Structural diversity among plastid genomes of land plants[J]. Adv Bot Res, 2018, 85:263-292.
|
[9] |
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes:diversity, evolution, and applications in genetic engineering[J]. Genome Biol, 2016, 17(1):134.
|
[10] |
Lubna, Asaf S, Khan AL, Jan R, Khan A, et al. The dynamic history of gymnosperm plastomes:insights from structural characterization, comparative analysis, phylo-genomics, and time divergence[J]. Plant Genome, 2021, 14(3):e20130.
|
[11] |
Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants:a billion years of evolutionary history[J]. Am J Bot, 2018, 105(3):291-301.
|
[12] |
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylo-geny of green plants (Viridiplantae) from 360 plastid genomes[J]. BMC Evol Biol, 2014, 14:23.
|
[13] |
Neale DB, Wheeler NC. The conifers[M]//Neale DB, Wheeler NC, eds. The Conifers:Genomes, Variation and Evolution. Cham:Springer, 2019:1-21.
|
[14] |
Farjon A. The kew review:conifers of the world[J]. Kew Bull, 2018, 73(1):8.
|
[15] |
Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms[J]. Nat Plants, 2021, 7(8):1015-1025.
|
[16] |
García Esteban L, de Palacios P, García-Iruela A, García-Fernández F, García-Esteban L, de Vega DG. Comparative wood anatomy in Pinaceae with reference to its systematic position[J]. Forests, 2021, 12(12):1706.
|
[17] |
Gernandt DS, Reséndiz Arias C, Terrazas T, Dugua XA, Willyard A. Incorporating fossils into the Pinaceae tree of life[J]. Am J Bot, 2018, 105(8):1329-1344.
|
[18] |
Ran JH, Shen TT, Wang MM, Wang XQ. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms[J]. Proc Roy Soc B Biol Sci, 2018, 285(1881):20181012.
|
[19] |
Gernandt DS, Magallón S, Geada López G, Zerón Flores O, Willyard A,Liston A.Use of simultaneous analyses to guide fossil-based calibrations of pinaceae phylogeny[J]. Int J Plant Sci, 2008, 169(8):1086-1099.
|
[20] |
Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM. Compa-rative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies[J]. Genome Biol Evol, 2010, 2:504-517.
|
[21] |
Sudianto E, Wu CS, Lin CP, Chaw SM. Revisiting the plastid phylogenomics of Pinaceae with two complete plastomes of Pseudolarix and Tsuga[J]. Genome Biol Evol, 2016, 8(6):1804-1811.
|
[22] |
Ran JH, Shen TT, Wu H, Gong X, Wang XQ. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis[J]. Mol Phylogenet Evol, 2018, 129:106-116.
|
[23] |
Ni ZX, Ye YJ, Bai TD, Xu M, Xu LA. Complete chloroplast genome of Pinus massoniana (Pinaceae):Gene rearrangements, loss of ndh genes, and short inverted repeats contraction, expansion[J]. Molecules, 2017, 22(9):1528.
|
[24] |
Chen L, Li LN, Yang GD, Qian HR, Li MZ. Characterization of the complete chloroplast genome sequence of Tsuga longibracteata W. C. Cheng (Pinaceae)[J]. Conserv Genet Resour, 2019, 11(2):117-120.
|
[25] |
Li ZH, Zhu J, Yang YX, Yang J, He JW,Zhao GF.The complete plastid genome of Bunge's pine Pinus bungeana (Pinaceae)[J]. Mitochondrial DNA Part A, 2016, 27(4):2971-2972.
|
[26] |
Li ZH, Qian ZQ, Liu ZL, Deng TT, Zu YM, et al. The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species to China[J]. Mitochondrial DNA Part A, 2016, 27(4):2635-2636.
|
[27] |
Li JF, Xu B, Yang Q, Liu ZL. The complete chloroplast genome sequence of Picea schrenkiana (Pinaceae)[J]. Mitochondrial DNA Part B, 2020, 5(3):2191-2192.
|
[28] |
Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM. Comparative chloroplast genomes of pinaceae:insights into the mechanism of diversified genomic organizations[J]. Genome Biol Evol, 2011, 3:309-319.
|
[29] |
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific plastome recombination reflects ancient reticulate evolution in Picea (Pinaceae)[J]. Mol Biol Evol, 2017, 34(7):1689-1701.
|
[30] |
Ranade SS, García-Gil MR, Rosselló JA. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch):insights from in silico analysis of nuclear and organellar genomes[J]. Mol Genet Genomics, 2016, 291(2):935-941.
|
[31] |
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty:de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Res, 2017, 45(4):e18.
|
[32] |
Qu XJ, Moore MJ, Li DZ, Yi TS. PGA:a software pac-kage for rapid, accurate, and flexible batch annotation of plastomes[J]. Plant Methods, 2019, 15(1):50.
|
[33] |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2:new models and efficient methods for phylogenetic inference in the genomic era[J]. Mol Biol Evol, 2020, 37(5):1530-1534.
|
[34] |
Darling AE, Mau B, Perna NT. progressiveMauve:multiple genome alignment with gene gain, loss and rearrangement[J]. PLoS One, 2010, 5(6):e11147.
|
[35] |
Tsumura Y, Suyama Y, Yoshimura K. Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga[J]. Mol Biol Evol, 2000, 17(9):1302-1212.
|
[36] |
李佳, 姜斌, 苏应娟, 王艇. 白豆杉的叶绿体基因组结构与系统进化分析[J].植物科学学报, 2021, 39(1):5-13.
Li J, Jiang B, Su YJ, Wang T. Structure and phylogenetic analysis of the Pseudotaxus chienii (W. C. Cheng) W. C. Cheng chloroplast genome[J]. Plant Science Journal, 2021, 39(1):5-13.
|
[37] |
姚庆渭, 黄鹏成. 松科各属种子的研究[J].南京林业大学学报(自然科学版), 1980(1):28-42.
Yao QW, Huang PC. A research of the seeds of genera in Pinaceae[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 1980(1):28-42.
|
[38] |
Esteban LG, De Palacios P. Comparative wood anatomy in Abietoideae (Pinaceae)[J]. Bot J Linn Soc, 2009, 160(2):184-196.
|
[39] |
Kim SC, Lee JW, Lee MW, Baek SH, Hong KN. The complete chloroplast genome sequences of Larix kaempferi and Larix olgensis var. koreana (Pinaceae)[J]. Mitochondrial DNA Part B, 2018, 3(1):36-37.
|
[40] |
Hao ZD, Cheng TL, Zheng RH, Xu HB, Zhou YW, et al. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis:comparative analysis and insights into dynamics of chloroplast genome rearrangement in cupressophytes and Pinaceae[J]. PLoS One, 2016, 11(8):e0161809.
|
[41] |
Gernandt DS, Holman G, Campbell C, Parks M, Mathews S, et al. Phylogenetics of extant and fossil Pinaceae:methods for increasing topological stability[J]. Botany, 2016, 94(9):863-884.
|
[42] |
Ni ZX, Ye YJ, Xu M, Xu LA. Comparison among three methods for obtaining chloroplast genome sequences from the conifer Pinus massoniana[J]. Genomics, 2020, 112(3):2459-2466.
|