Citation: | Wang MH,Ran H,Liu YY,Sun HY,Cao YN,Wang HW,Li JM. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal,2023,41(2):149−158. DOI: 10.11913/PSJ.2095-0837.22161 |
The chloroplast genomes of two species of Aralia and Pentapanax were sequenced, assembled, annotated, and structurally analyzed. Furthermore, combined with chloroplast genome sequences of related species downloaded from the NCBI database, phylogenetic analysis was conducted. The chloroplast genomes of the four species all exhibited a quadripartite circular structure with a length of 155 744 – 156 201 bp and GC content of 38.1%. Both genera contained 132 genes, including 87 protein-coding genes, eight ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. Boundary analysis found that neither contraction nor expansion occurred in the inverted repeat regions. The number of simple sequence repeat (SSR) loci ranged from 39 to 43, most of which were mononucleotide and dinucleotide repeats, and mostly located in non-coding regions. Sequence differences mainly occurred in the non-coding regions of the large single copy (LSC) and small single copy (SSC) regions. The maximum-likelihood tree revealed two highly supported monophyletic branches: the first composed of Pentapanax, Aralia atropurpurea Franch., Aralia cordata Thunb., and Aralia continentalis Kitagawa and the second composed of other Aralia species. In general, the chloroplast genome sequences of Aralia and Pentapanax plants were relatively conserved. The phylogenetic results supported the placement of Pentapanax into the genus Aralia, with each Aralia species forming a monophyly.
[1] |
程莹,李根有,夏国华,黄晌决,黄宇锋. 楤木属植物组织培养研究综述[J]. 浙江农林大学学报,2011,28(6):968−972.
Cheng Y,Li GY,Xia GH,Huang SJ,Huang YF. Review on tissue culture of Aralia plants[J]. Journal of Zhejiang A & F University,2011,28 (6):968−972.
|
[2] |
郑玲玲,裴凌鹏. 楤木属植物研究进展[J]. 中国民族医药杂志,2010,16(6):57−59.
|
[3] |
张广美,王春梅. 楤木属植物及其活性成分药理学研究进展[J]. 中华中医药学刊,2011,29(8):1715−1717.
Zhang GM,Wang CM. Review of pharmacotogical effects of plants of Araliaceae and bioactive compounds[J]. Chinese Archives of Traditional Chinese Medicine,2011,29 (8):1715−1717.
|
[4] |
Wu ZY, Raven PH, Hong DY. Flora of China: Vol.13[M]. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press, 2007: 480−489.
|
[5] |
李湘萍,向其柏. 中国楤木属的研究[J]. 南京林业大学学报,1992,16(2):17−24.
Li XP,Xiang QB. Studies on the genus Aralia Linn.[J]. Journal of Nanjing Forestry University,1992,16 (2):17−24.
|
[6] |
向其柏. 五加科植物的新分类群及某些修订[J]. 南京林学院学报,1985,28(2):15−28.
Xiang QB. New taxa and some revisions about the Araliaceae of China[J]. Journal of Nanjing Institute of Forestry,1985,28 (2):15−28.
|
[7] |
Wen J,Plunkett GM,Mitchell AD,Wagstaff SJ. The evolution of Araliaceae:a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA[J]. Syst Bot,2001,26 (1):144−167.
|
[8] |
Wen J. Revision of Aralia Sect. Pentapanax (Seem. ) J. Wen (Araliaceae)[M]. Fuzhou: Cathaya, 2002: 1−116.
|
[9] |
Wen J. Systematics and Biogeography of Aralia L. (Araliaceae): Revision of Aralia Sects. Aralia, Humiles, Nanae, and Sciadodendron[M]. Washington D. C: Contributions from the United States National Herbarium, 2011: 1−172.
|
[10] |
Li R,Wen J. Phylogeny and diversification of Chinese Araliaceae based on nuclear and plastid DNA sequence data[J]. J Syst Evol,2016,54 (4):453−467. doi: 10.1111/jse.12196
|
[11] |
Jansen RK,Raubeson LA,Boore JL,Depamphilis CW,Chumley TW,et al. Methods for obtaining and analyzing whole chloroplast genome sequences[J]. Methods Enzymol,2005,395:348−384.
|
[12] |
Alzahrani DA. Complete chloroplast genome of Abutilon fruticosum:genome structure,comparative and phylogenetic analysis[J]. Plants,2021,10 (2):270. doi: 10.3390/plants10020270
|
[13] |
樊守金,郭秀秀. 植物叶绿体基因组研究及应用进展[J]. 山东师范大学学报(自然科学版),2022,37(1):22−31.
Fan SJ,Guo XX. Advances in research and application of plant chloroplast genome[J]. Journal of Shandong Normal University (Natural Science)
|
[14] |
Brown J,Pirrung M,McCue LA. FQC dashboard:integrates FastQC results into a web-based,interactive,and extensible FASTQ quality control tool[J]. Bioinformatics,2017,33 (19):3137−3139. doi: 10.1093/bioinformatics/btx373
|
[15] |
Jin JJ,Yu WB,Yang JB,Song Y,de Pamphilis CW,et al. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol,2020,21 (1):241. doi: 10.1186/s13059-020-02154-5
|
[16] |
Qu XJ,Moore MJ,Li DZ,Yi TS. PGA:a software package for rapid,accurate,and flexible batch annotation of plastomes[J]. Plant Methods,2019,15 (1):50. doi: 10.1186/s13007-019-0435-7
|
[17] |
Greiner S,Lehwark P,Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res,2019,47 (W1):W59−W64. doi: 10.1093/nar/gkz238
|
[18] |
Amiryousefi A,Hyvönen J,Poczai P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics,2018,34 (17):3030−3031. doi: 10.1093/bioinformatics/bty220
|
[19] |
Beier S,Thiel T,Münch T,Scholz U,Mascher M. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics,2017,33 (16):2583−2585. doi: 10.1093/bioinformatics/btx198
|
[20] |
Frazer KA,Pachter L,Poliakov A,Rubin EM,Dubchak I. VISTA:computational tools for comparative genomics[J]. Nucleic Acids Res,2004,32 (S2):W273−W279.
|
[21] |
Librado P,Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics,2009,25 (11):1451−1452. doi: 10.1093/bioinformatics/btp187
|
[22] |
Katoh K,Misawa K,Kuma KI,Miyata T. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Res,2002,30 (14):3059−3066. doi: 10.1093/nar/gkf436
|
[23] |
Kalyaanamoorthy S,Minh BQ,Wong TKF,von Haeseler A,Jermiin LS. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nat Methods,2017,14 (6):587−589. doi: 10.1038/nmeth.4285
|
[24] |
Zhang D,Gao FL,Jakovlić I,Zou H,Zhang J,et al. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Mol Ecol Resour,2020,20 (1):348−355. doi: 10.1111/1755-0998.13096
|
[25] |
Kim K,Nguyen VB,Dong JZ,Wang Y,Park JY,et al. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species[J]. Sci Rep,2017,7 (1):4917. doi: 10.1038/s41598-017-05218-y
|
[26] |
Ran H,Liu YY,Wu C,Cao YN. Phylogenetic and comparative analyses of complete chloroplast genomes of Chinese Viburnum and Sambucus (Adoxaceae)[J]. Plants,2020,9 (9):1143. doi: 10.3390/plants9091143
|
[27] |
田星,刘莹莹,张颖敏,杨从卫,钱子刚,李国栋. 藜芦属药用植物的叶绿体基因组比较分析和系统发育研究[J]. 中草药,2022,53(4):1127−1137.
Tian X,Liu YY,Zhang YM,Yang CW,Qian ZG,Li GD. Comparative and phylogeny analysis of four Veratrum medicinal plants complete chloroplast genomes[J]. Chinese Traditional and Herbal Drugs,2022,53 (4):1127−1137.
|
[28] |
黄琼林. 高良姜叶绿体基因组测序与特征分析[J]. 热带作物学报,2021,42(1):1−6.
Huang QL. Complete sequencing and analysis of chloroplast genome from Alpinia officinarum Hance[J]. Chinese Journal of Tropical Crops,2021,42 (1):1−6.
|
[29] |
Liu J,Wen J. The complete chloroplast genome of Aralia atropurpurea (Araliaceae,the ginseng family) from the Sino-Himalayan region,China[J]. Mitochondrial DNA Part B Resour,2019,4 (2):2773−2774. doi: 10.1080/23802359.2019.1643805
|
[30] |
Kim CK,Kim YK. The complete chloroplast genome of Aralia cordata (Apiales:Araliaceae)[J]. Mitochondrial DNA Part B Resour,2019,4 (1):211−212. doi: 10.1080/23802359.2018.1546140
|
[31] |
Abdullah N,Henriquez CL,Mehmood F,Carlsen MM,Islam M,et al. Complete chloroplast genomes of Anthurium huixtlense and Pothos scandens (Pothoideae,Araceae):unique inverted repeat expansion and contraction affect rate of evolution[J]. J Mol Evol,2020,88 (7):562−574. doi: 10.1007/s00239-020-09958-w
|
[32] |
Liu CK,Yang ZY,Yang LF,Yang JB,Ji YH. The complete plastome of Panax stipuleanatus:comparative and phylogenetic analyses of the genus Panax (Araliaceae)[J]. Plant Divers,2018,40 (6):265−276. doi: 10.1016/j.pld.2018.11.001
|
[33] |
宋菊,龙月红,林丽梅,尹峰,邢朝斌. 五加科植物叶绿体基因组结构与进化分析[J]. 中草药,2017,48(24):5070−5075.
Song J,Long YH,Lin LM,Yin F,Xing ZB. Analysis on structure and phylogeny of chloroplast genomes in Araliaceae species[J]. Chinese Traditional and Herbal Drugs,2017,48 (24):5070−5075.
|
[34] |
Li R,Ma PF,Wen J,Yi TS. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications[J]. PLoS One,2013,8 (10):e78568. doi: 10.1371/journal.pone.0078568
|
[35] |
Dong WP,Xu C,Li CH,Sun JH,Zuo YJ,et al. ycf1,the most promising plastid DNA barcode of land plants[J]. Sci Rep,2015,5:8348. doi: 10.1038/srep08348
|
[36] |
郭栋梁,王静,韩冬梅,潘学文,李建光. 龙眼顶芽转录组简单重复序列(SSR)标记信息分析及分子标记开发[J]. 植物生理学报,2018,54(5):863−871.
Guo DL,Wang J,Han DM,Pan XW,Li JG. Analysis on simple sequence repeat (SSR) information in apical transcriptome and development of molecular markers in Dimocarpus longan[J]. Plant Physiology Journal,2018,54 (5):863−871.
|
[37] |
王久利,郑旭,邓因子. 暴马丁香的叶绿体基因组特征分析[J]. 阜阳师范大学学报 (自然科学版),2022,39(1):55−64.
Wang JL,Zheng X,Deng YZ. Characterization of chloroplast genome of Syringa reticulata subsp. amurensis[J]. Journal of Fuyang Normal University (Natural Science)
|
[38] |
苏玥,刘娟娟,完斌,张鹏举,陈正根,等. 乳苣叶绿体基因组特征及其系统发育分析[J]. 中国农业科技导报,2021,23(6):33−42.
Su Y,Liu JJ,Wan B,Zhang PJ,Chen ZG,et al. Chloroplast genome structure characteristic and phylogenetic analysis of Mulgedium tataricum[J]. Journal of Agricultural Science and Technology,2021,23 (6):33−42.
|
[39] |
张韵洁,李德铢. 叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报,2011,33(4):365−375.
Zhang YJ,Li DZ. Advances in phylogenomics based on complete chloroplast genomes[J]. Plant Diversity and Resources,2011,33 (4):365−375.
|
[40] |
许旭东,杨峻山,朱兆仪. 楤木属植物三萜皂甙研究进展[J]. 药学学报,1997,32(9):711−720.
|