Citation: | Zhu P,Xue WK,Zhang WC,Wu XF,Li XZ,Liu X. Preliminary study on the heat preservation function of Androsace tapete Maxim. on the Qinghai-Tibet Plateau[J]. Plant Science Journal,2023,41(3):301−311. DOI: 10.11913/PSJ.2095-0837.22220 |
To explore the dominant factors determining thermal insulation in Androsace tapete Maxim., as well as its adaptability to survive extreme temperature changes, the internal temperatures of living and dead individuals were measured. The diurnal changes in surface and internal temperatures of A. tapete and nearby air and soil temperatures were also recorded in summer, winter, and under simulated hail conditions. The temperature data revealed no significant differences between the internal temperatures of living and dead individuals of A. tapete. For diurnal temperature changes, the variation amplitude of the surface temperature of A. tapete was much larger than that of the air, while the variation amplitude of the internal temperature was similar to that of the soil, which was much lower than that of the air. Although the surface temperature dropped to 0℃ after the low-temperature simulated hail treatment, the internal temperature was maintained above 10℃. These results showed that the heat preservation effect of A. tapete was mainly due to its structural characteristics and was less affected by altitude differences, metabolic activities, and cold acclimation. Its heat preservation capacity was slightly weaker than the 5-cm soil layer, which may significantly buffer the high plateau from severe diurnal temperature differences and reduce the stress of extreme environmental temperatures. This study compared diurnal variation in the internal temperature of A. tapete in summer and winter, as well as the internal temperature of surviving and dead individuals, which should inform research on the structural characteristics of cushion plants adapted to extreme environments.
[1] |
张镱锂,李炳元,郑度. 论青藏高原范围与面积[J]. 地理研究,2002,21(1):1−8. doi: 10.3321/j.issn:1000-0585.2002.01.001
Zhang YL,Li BY,Zheng D. A discussion on the boundary and area of the Tibetan plateau in China[J]. Geographical Research,2002,21 (1):1−8. doi: 10.3321/j.issn:1000-0585.2002.01.001
|
[2] |
姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展,2006,21(5):459−464. doi: 10.3321/j.issn:1001-8166.2006.05.003
Yao TD,Zhu LP. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science,2006,21 (5):459−464. doi: 10.3321/j.issn:1001-8166.2006.05.003
|
[3] |
Smith SJ,Edmonds J,Hartin CA,Mundra A,Calvin K. Near-term acceleration in the rate of temperature change[J]. Nat Clim Change,2015,5 (4):333−336. doi: 10.1038/nclimate2552
|
[4] |
Comiso JC,Parkinson CL,Gersten R,Stock L. Accelerated decline in the Arctic sea ice cover[J]. Geophys Res Lett,2008,35 (1):L01703.
|
[5] |
Hughes TP,Kerry JT,Álvarez-Noriega M,Álvarez-Romero JG,Anderson KD,et al. Global warming and recurrent mass bleaching of corals[J]. Nature,2017,543 (7645):373−377. doi: 10.1038/nature21707
|
[6] |
Steffen W,Broadgate W,Deutsch L,Gaffney O,Ludwig C. The trajectory of the Anthropocene:The great acceleration[J]. Anthropocene Rev,2015,2 (1):81−98. doi: 10.1177/2053019614564785
|
[7] |
Baker BB,Moseley RK. Advancing treeline and retreating glaciers:implications for conservation in Yunnan,P. R. China[J]. Arct Antarct Alp Res,2007,39 (2):200−209. doi: 10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2
|
[8] |
Brown LE,Hannah DM,Milner AM. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks[J]. Glob Change Biol,2007,13 (5):958−966. doi: 10.1111/j.1365-2486.2007.01341.x
|
[9] |
Zhang YZ,Qian LS,Chen XF,Sun L,Sun H,Chen JG. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau:a basic study for future conservation efforts on alpine ecosystems[J]. Plant Diversity,2022,44 (3):231−242. doi: 10.1016/j.pld.2021.09.001
|
[10] |
Cranston BH,Monks A,Whigham PA,Dickinson KJM. Variation and response to experimental warming in a New Zealand cushion plant species[J]. Austral Ecol,2015,40 (6):642−650. doi: 10.1111/aec.12231
|
[11] |
Le Roux PC,McGeoch MA,Nyakatya MJ,Chown SL. Effects of a short-term climate change experiment on a sub-Antarctic keystone plant species[J]. Global Change Biol,2015,11 (10):1628−1639.
|
[12] |
Körner CH,de Moraes J. Water potential and diffusion resistance in alpine cushion plants on clear summer days[J]. Oecol Plant,1979,14 (2):109−120.
|
[13] |
Fischer H,Kuhn HW. Diurnal courses of temperatures in cushion plants[J]. Flora,1984,175 (2):117−134. doi: 10.1016/S0367-2530(17)31427-5
|
[14] |
Cavieres LA,Badano EI,Sierra-Almeida A,Molina-Montenegro MA. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile[J]. Arct Antarct Alp Res,2007,39 (2):229−236. doi: 10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2
|
[15] |
Hager J,Faggi AM. Observaciones sobre distribución y microclima de cojines enanos de la isla de Creta y del noroeste de la Patagonia[J]. Parodiana,1990,6:109−127.
|
[16] |
Spomer GG. Physiological ecology studies of Alpine cushion plants[J]. Physiol Plant,1964,17 (3):717−724. doi: 10.1111/j.1399-3054.1964.tb08198.x
|
[17] |
Li R,Luo T,Tang Y,Du M,Zhang X. The altitudinal distribution center of a widespread cushion species is related to an optimum combination of temperature and precipitation in the central Tibetan Plateau[J]. J Arid Environ,2013,88:70−77. doi: 10.1016/j.jaridenv.2012.07.018
|
[18] |
Li RC,Luo TX,Mölg T,Zhao JX,Li X,et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall[J]. Sci Rep,2016,6:20985. doi: 10.1038/srep20985
|
[19] |
Badano EI,Jones CG,Cavieres LA,Wright JP. Assessing impacts of ecosystem engineers on community organization:a general approach illustrated by effects of a high-Andean cushion plant[J]. Oikos,2006,115 (2):369−385. doi: 10.1111/j.2006.0030-1299.15132.x
|
[20] |
Reid AM,Lamarque LJ,Lortie CJ. A systematic review of the recent ecological literature on cushion plants:champions of plant facilitation[J]. Web Ecol,2010,10 (1):44−49. doi: 10.5194/we-10-44-2010
|
[21] |
闫巍. 不同海拔高度垫状点地梅微环境因子特征及其光合测定[D]. 北京: 中国科学院研究生院, 2006: 38−39.
|
[22] |
李渤生,王金亭,李世英. 西藏座垫植物的区系特点及地理分布[J]. 山地研究(现山地学报),1987,5(1):14−20.
Li BS,Wang JT,Li SY. The floristic featvres and geographic distribution of the cushion plant in Xizang[J]. Journal of Mountain Research,1987,5 (1):14−20.
|
[23] |
黄荣福,王为义. 青藏高原垫状植物区系及垫状植物群落演替[J]. 高原生物学集刊,1991,10:15−26.
Huang RF,Wang WY. The flora and community succession of cushion plant in Qinghai-Xizang plateau[J]. Acta Biologica Plateau Sinica,1991,10:15−26.
|
[24] |
何永涛,石培礼,张宪洲,杜明远,闫巍,孙维. 当雄念青唐古拉山脉南坡不同海拔垫状点地梅分布特征[J]. 山地学报,2013,31(6):641−646. doi: 10.3969/j.issn.1008-2786.2013.06.001
He YT,Shi PL,Zhang XZ,Du MY,Yan W,Sun W. Elevational distribution of cushion plant Androsace tapete in the southern slope of Nyainqentanglha Mountains,Tibetan Plateau[J]. Mountain Research,2013,31 (6):641−646. doi: 10.3969/j.issn.1008-2786.2013.06.001
|
[25] |
秦志业,谢文忠. 藏北土门地区垫状植物的形态与生态观察[J]. 植物学报,1980,22(2):177−181.
Qin ZY,Xie WZ. Observations on the morphology and ecology of the cushion plants in Togme region of northern Xizang[J]. Acta Botanica Sinica,1980,22 (2):177−181.
|
[26] |
黄荣福. 青海可可西里地区垫状植物[J]. 植物学报,1994,36(2):130−137.
Huang RF. The cushion plant in the Hoh xil area of Qinghai[J]. Acta Botanica Sinica,1994,36 (2):130−137.
|
[27] |
He YT,Kueffer C,Shi PL,Zhang XZ,Du MY,et al. Variation of biomass and morphology of the cushion plant Androsace tapete along an elevational gradient in the Tibetan Plateau[J]. Plant Species Biol,2014,29 (3):E64−E71. doi: 10.1111/1442-1984.12031
|
[28] |
Geng YP,Tang SQ,Tashi T,Song ZP,Zhang GR,et al. Fine-and landscape-scale spatial genetic structure of cushion rockjasmine,Androsace tapete (Primulaceae),across southern Qinghai-Tibetan Plateau[J]. Genetica,2019,135 (3):419−427.
|
[29] |
Zeng LY,Xu LL,Tang SQ,Tersing TS,Geng YP,Zhong Y. Effect of sampling strategy on estimation of fine-scale spatial genetic structure in Androsace tapete (Primulaceae),an alpine plant endemic to Qinghai-Tibetan Plateau[J]. J. Syst Evol,2010,48 (4):257−264. doi: 10.1111/j.1759-6831.2010.00084.x
|
[30] |
尚凯锋,刘艳峰,王登甲,李涛. 室外气温与太阳辐射的随动性关系研究[J]. 土木建筑与环境工程,2015,37(5):116−121.
Shang KF,Liu YF,Wang DJ,Li T. Dynamic relationship between outdoor air temperature and solar radiation[J]. Journal of Civil,Architectural & Environmental Engineering,2015,37 (5):116−121.
|
[31] |
柴红敏,刘增进,谷红梅. 太阳辐射、气温及土温关系探讨[J]. 华北水利水电学院学报,2003,24(3):4−8.
Chai HM,Liu ZJ,Gu HM. Discussion on relationship among solar radiation,air temperature and soil temperature[J]. Journal of North China University of Water Resources and Electric Power,2003,24 (3):4−8.
|
[32] |
王为义,黄荣福. 垫状植物对青藏高原高山环境的形态-生态学适应的研究[J]. 高原生物学集刊,1990,9:13−26.
Wang WY,Huang RF. Studies on morpho-ecological adaptabilities to the alpine ecological environments in cushion plants on Qinghai-Xizang Plateau[J]. Acta Biologica Plateau Sinica,1990,9:13−26.
|
[33] |
Gauslaa Y. Heat resistance and energy budget in different Scandinavian plants[J]. Holarct Ecol,1984,7 (1):5−78.
|
[34] |
Kleier C,Rundel P. Energy balance and temperature relations of Azorella compacta,a high-elevation cushion plant of the central Andes[J]. Plant Biol,2010,11 (3):351−358.
|
[35] |
李渤生,张经炜,王金亭,陈伟烈. 西藏的高山座垫植被[J]. 植物学报,1985,27(3):311−317.
Li BS,Zhang JW,Wang JT,Chen WL. The alpine cushion vegetation of Xizang[J]. Journal of Integrative Plant Biology,1985,27 (3):311−317.
|
[36] |
Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world[J]. Nat Climate Chang,2015,5 (5):424−430. doi: 10.1038/nclimate2563
|
[37] |
Bertrand R,Lenoir J,Piedallu C,Riofrío-Dillon G,De Ruffray P,et al. Changes in plant community composition lag behind climate warming in lowland forests[J]. Nature,2011,479 (7374):517−520. doi: 10.1038/nature10548
|
[38] |
Xie H,Ye JS,Liu XM,Chong YE. Warming and drying trends on the Tibetan Plateau (1971-2005)[J]. Theor Appl Climatol,2010,101 (3):241−253.
|
[39] |
You QL,Kang SC,Pepin N,Yan YP. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau,1961-2005[J]. Geophys Res Lett,2008,35 (4):L04704.
|
[40] |
Guisan A,Theurillat JP. Assessing alpine plant vulnerability to climate change:a modeling perspective[J]. Integr Assess,2000,1 (4):307−320. doi: 10.1023/A:1018912114948
|
[41] |
Dullinger S,Gattringer A,Thuiller W,Moser D,Zimmermann NE,et al. Extinction debt of high-mountain plants under twenty-first-century climate change[J]. Nat Climate Change,2012,2 (8):619−622. doi: 10.1038/nclimate1514
|
[42] |
Alexander JM,Diez JM,Levine JM. Novel competitors shape species’ responses to climate change[J]. Nature,2015,525 (7570):515−518. doi: 10.1038/nature14952
|
[43] |
周丽英,杨丽涛,郑坚瑜. 植物抗寒冻基因工程研究进展[J]. 植物学通报,2001,18(3):325−331.
Zhou LY,Yang LT,Deng JY. Recent progresses in the studies of genetic engineering for cold resistance in plants[J]. Chinese Bulletin of Botany,2001,18 (3):325−331.
|
[44] |
黎定军,高必达. 植物抗寒冻胁迫基因工程研究进展[J]. 作物研究,2000,14(3):45−48. doi: 10.16848/j.cnki.issn.1001-5280.2000.03.016
|
[45] |
汪晓峰,任红旭,孙国钧. 四裂红景天与长鳞红景天叶片中抗氧化系统随海拔梯度的变化[J]. 植物生态学报,2005,29(2):331−337. doi: 10.3321/j.issn:1005-264X.2005.02.021
Wang XF,Ren HX,Sun GJ. Altitudinal variation of antioxidative system in leaves of Rhodiola quadrifida and R. Gelida[J]. Chinese Journal of Plant Ecology,2005,29 (2):331−337. doi: 10.3321/j.issn:1005-264X.2005.02.021
|
[46] |
孟凡珍,张振贤,于贤昌,艾希珍. 田间低温胁迫对大白菜某些理化特性的影响研究[J]. 中国生态农业学报,2005,13(2):84−86.
Meng FZ,Zhang ZX,Yu XC,Ai XZ. Effect of low temperature stress on some physiological and biochemical characteristics of Chinese cabbage in field[J]. Chinese Journal of Eco-Agriculture,2005,13 (2):84−86.
|