Citation: | Huang Y,Zhai L,Xie LL,Xu JS,Zhang XK,Xu BB. Genome-wide identification and expression analysis of the MAP70 gene family in Brassica napus L.[J]. Plant Science Journal,2023,41(5):647−656. DOI: 10.11913/PSJ.2095-0837.22245 |
MAP70 family members were screened and identified using bioinformatics based on the genomic database of Brassica napus L., with bioinformatics analysis performed on the sequence characteristics of the identified BnaMAP70 gene family members. Expression levels of the BnaMAP70 genes were analyzed using qRT-PCR in seedling varieties with waterlogging sensitivity and tolerance. In total, 19 members of the BnaMAP70 gene family were identified, distributed on 11 chromosomes and divided into five subfamilies. The upstream elements involved in anaerobic stress and phytohormones of the BnaMAP70 promoter indicated that they may be involved in plant growth, development, and regulation of waterlogging stress. The transcription levels of genes were species-specific, plant site-specific, and time-specific. The qRT-PCR results showed that BnaMAP70-1 and BnaMAP70-4 were differentially expressed under waterlogging stress, indicating that these two genes may be regulated by waterlogging stress.
[1] |
Fan XL,Zhang ZS,Gao HY,Yang C,Liu MJ,et al. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark[J]. PLoS One,2014,9 (2):e89067. doi: 10.1371/journal.pone.0089067
|
[2] |
Sundgren TK,Uhlen AK,Lillemo M,Briese C,Wojciechowski T. Rapid seedling establishment and a narrow root stele promotes waterlogging tolerance in spring wheat[J]. J Plant Physiol,2018,227:45−55. doi: 10.1016/j.jplph.2018.04.010
|
[3] |
Lynch JP. Root phenes that reduce the metabolic costs of soil exploration:opportunities for 21st century agriculture[J]. Plant Cell Environ,2015,38 (9):1775−1784. doi: 10.1111/pce.12451
|
[4] |
Ploschuk RA,Miralles DJ,Colmer TD,Ploschuk EL,Striker GG. Waterlogging of winter crops at early and late stages:impacts on leaf physiology,growth and yield[J]. Front Plant Sci,2018,9:1863. doi: 10.3389/fpls.2018.01863
|
[5] |
Ambros S,Kotewitsch M,Wittig PR,Bammer B,Mustroph A. Transcriptional response of two Brassica napus cultivars to short-term hypoxia in the root zone[J]. Front Plant Sci,2022,13:897673. doi: 10.3389/fpls.2022.897673
|
[6] |
Yamauchi T,Colmer TD,Pedersen O,Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress[J]. Plant Physiol,2018,176 (2):1118−1130. doi: 10.1104/pp.17.01157
|
[7] |
Sauter M. Root responses to flooding[J]. Curr Opin Plant Biol,2013,16 (3):282−286. doi: 10.1016/j.pbi.2013.03.013
|
[8] |
Gibbs DJ,Lee SC,Isa N,Gramuglia S,Fukao T,et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants[J]. Nature,2011,479 (7373):415−418. doi: 10.1038/nature10534
|
[9] |
Tong C,Hill CB,Zhou GF,Zhang XQ,Jia Y,Li CD. Opportunities for improving waterlogging tolerance in cereal crops-physiological traits and genetic mechanisms[J]. Plants (Basel)
|
[10] |
马海清,刘清云,高立兵,胡志文,张清香,等. 油菜初花期淹水胁迫对产量及构成因子的影响[J]. 中国农业文摘-农业工程,2020,32(6):77−80. doi: 10.3969/j.issn.1002-5103.2020.06.029
|
[11] |
俞建河,王本来,曹秀清,沈涛. 淹水时期与天数对油菜生长性状和产量的影响[J]. 安徽农业科学,2021,49(14):184−187. doi: 10.3969/j.issn.0517-6611.2021.14.049
Yu JH,Wang BL,Cao XQ,Shen T. Effects of flooding period and days on the growth traits and yield of rapeseed[J]. Journal of Anhui Agricultural Sciences,2021,49 (14):184−187. doi: 10.3969/j.issn.0517-6611.2021.14.049
|
[12] |
李阳阳,荆蓉蓉,吕蓉蓉,石鹏程,李欣,等. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测[J]. 作物学报,2019,45(12):1806−1821.
Li YY,Jing RR,LÜ RR,Shi PC,Li X,et al. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L.[J]. Acta Agronomica Sinica,2019,45 (12):1806−1821.
|
[13] |
徐明月. 甘蓝型油菜发芽期耐渍相关基因的筛选[D]. 北京: 中国农业科学院, 2014: 31.
|
[14] |
Zou XL,Zeng L,Lu GY,Cheng Y,Xu JS,Zhang XK. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.[J]. J Integr Agr,2015,14 (9):1723−1734. doi: 10.1016/S2095-3119(15)61138-8
|
[15] |
Zou XL,Tan XY,Hu CW,Zeng L,Lu GP,et al. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage[J]. Int J Mol Sci,2013,14 (2):2637−2651. doi: 10.3390/ijms14022637
|
[16] |
Li JJ,Iqbal S,Zhang YT,Chen YH,Tan ZD,et al. Transcriptome analysis reveals genes of flooding-tolerant and flooding-sensitive rapeseeds differentially respond to flooding at the germination stage[J]. Plants (Basel)
|
[17] |
李继军. 油菜响应苗期渍害的动态过程和遗传基础[D]. 武汉: 华中农业大学, 2021: 17.
|
[18] |
Poole RL. The TAIR database[J]. Methods Mol Biol,2007,406:179−212.
|
[19] |
Song JM,Liu DX,Xie WZ,Yang ZQ,Guo L,et al. BnPIR:Brassica napus pan-genome information resource for 1689 accessions[J]. Plant Biotechnol J,2021,19 (3):412−414. doi: 10.1111/pbi.13491
|
[20] |
Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13 (8):1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[21] |
Mistry J,Chuguransky S,Williams L,Qureshi M,Salazar GA,et al. Pfam:The protein families database in 2021[J]. Nucleic Acids Res,2021,49 (D1):D412−D419. doi: 10.1093/nar/gkaa913
|
[22] |
McWilliam H,Li WZ,Uludag M,Squizzato S,Park YM,et al. Analysis tool web services from the EMBL-EBI[J]. Nucleic Acids Res,2013,41:W597−W600. doi: 10.1093/nar/gkt376
|
[23] |
Johnson M,Zaretskaya I,Raytselis Y,Merezhuk Y,McGinnis S,Madden TL. NCBI BLAST:a better web interface[J]. Nucleic Acids Res,2008,36 (W):W5−W9.
|
[24] |
Yang MZ,Derbyshire MK,Yamashita RA,Marchler-Bauer A. NCBI's conserved domain database and tools for protein domain analysis[J]. Curr Protoc Bioinformatics,2020,69 (1):e90.
|
[25] |
Gasteiger E,Gattiker A,Hoogland C,Ivanyi I,Appel RD,Bairoch A. ExPASy:the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Res,2003,31 (13):3784−3788. doi: 10.1093/nar/gkg563
|
[26] |
Horton P,Park KJ,Obayashi T,Fujita N,Harada H,et al. WoLF PSORT:protein localization predictor[J]. Nucleic Acids Res,2007,35 (W):W585−W587.
|
[27] |
Bolser DM, Staines DM, Perry E, Kersey PJ. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data[M]//Van Dijk ADJ, ed. Plant Genomics Databases. New York: Humana Press, 2017, 1533: 1-31.
|
[28] |
Hall BG. Building phylogenetic trees from molecular data with MEGA[J]. Mol Biol Evol,2013,30 (5):1229−1235. doi: 10.1093/molbev/mst012
|
[29] |
Letunic I,Bork P. Interactive Tree Of Life (iTOL) v5:an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Res,2021,49 (W1):W293−W296. doi: 10.1093/nar/gkab301
|
[30] |
Hu B,Jin JP,Guo AY,Zhang H,Luo JC,Gao G. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics,2015,31 (8):1296−1297. doi: 10.1093/bioinformatics/btu817
|
[31] |
Bailey TL,Boden M,Buske FA,Frith M,Grant CE,et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Res,2009,37 (W):W202−W208.
|
[32] |
Lescot M,Déhais P,Thijs G,Marchal K,Moreau Y,et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res,2002,30 (1):325−327. doi: 10.1093/nar/30.1.325
|
[33] |
Liu DX,Yu LQ,Wei LL,Yu PG,Wang J,et al. BnTIR:an online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus[J]. Plant Biotechnol J,2021,19 (10):1895−1897. doi: 10.1111/pbi.13665
|
[34] |
Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the
|
[35] |
Lee YRJ,Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells[J]. New Phytol,2019,222 (4):1705−1718. doi: 10.1111/nph.15705
|
[36] |
Goodson HV,Jonasson EM. Microtubules and microtubule-associated proteins[J]. Cold Spring Harb Perspect Biol,2018,10 (6):a022608. doi: 10.1101/cshperspect.a022608
|
[37] |
Struk S,Dhonukshe P. MAPs:cellular navigators for microtubule array orientations in Arabidopsis[J]. Plant Cell Rep,2014,33 (1):1−21. doi: 10.1007/s00299-013-1486-2
|
[38] |
Brouhard GJ,Rice LM. The contribution of αβ-tubulin curvature to microtubule dynamics[J]. J Cell Biol,2014,207 (3):323−334. doi: 10.1083/jcb.201407095
|
[39] |
Gardiner J. The evolution and diversification of plant microtubule-associated proteins[J]. Plant J,2013,75 (2):219−229. doi: 10.1111/tpj.12189
|
[40] |
Korolev AV,Chan J,Naldrett MJ,Doonan JH,Lloyd CW. Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells[J]. Plant J,2005,42 (4):547−555. doi: 10.1111/j.1365-313X.2005.02393.x
|
[41] |
Panchy N,Lehti-Shiu M,Shiu SH. Evolution of gene duplication in plants[J]. Plant Physiol,2016,171 (4):2294−2316. doi: 10.1104/pp.16.00523
|
[42] |
Zaman MS,Malik AI,Kaur P,Erskine W. Waterlogging tolerance of pea at germination[J]. J Agro Crop Sci,2018,204 (2):155−164. doi: 10.1111/jac.12230
|
[43] |
Bao ZR, Guo Y, Deng YL, Zang JZ, Zhang JH, et al. The microtubule-associated protein SlMAP70 interacts with SlIQD21 and regulates fruit shape formation in tomato[J/OL]. BioRxiv, 2022. doi: 10.1101/2022.08.08.503161.
|
[44] |
Stöckle D,Reyes-Hernández BJ,Barro AV,Nenadić M,Winter Z,et al. Microtubule-based perception of mechanical conflicts controls plant organ morphogenesis[J]. Sci Adv,2022,8 (6):eabm4974. doi: 10.1126/sciadv.abm4974
|
[45] |
Arduini I,Kokubun M,Licausi F. Editorial:crop response to waterlogging[J]. Front Plant Sci,2019,10:1578. doi: 10.3389/fpls.2019.01578
|
[46] |
Liu MM,Tan XF,Sun XH,Zwiazek JJ. Properties of root water transport in canola (Brassica napus) subjected to waterlogging at the seedling,flowering and podding growth stages[J]. Plant and Soil,2020,454 (1):431−445.
|
[47] |
Ryser P,Gill HK,Byrne CJ. Constraints of root response to waterlogging in Alisma triviale[J]. Plant Soil,2011,343 (1):247−260.
|
[48] |
Pesquet E,Korolev AV,Calder G,Lloyd CW. Mechanisms for shaping,orienting,positioning and patterning plant secondary cell walls[J]. Plant Signal Behav,2011,6 (6):843−849. doi: 10.4161/psb.6.6.15202
|
[49] |
Pesquet E,Korolev AV,Calder G,Lloyd CW. The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells[J]. Curr Biol,2010,20 (8):744−749. doi: 10.1016/j.cub.2010.02.057
|
[1] | Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282 |
[2] | Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140 |
[3] | Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152 |
[4] | Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503 |
[5] | ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487 |
[6] | CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394 |
[7] | SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346. |
[8] | CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353 |
[9] | He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588. |
[10] | CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266. |
1. |
谢伶俐,李永铃,许本波,张学昆. 油菜耐渍机理解析及遗传改良研究进展. 作物学报. 2025(02): 287-300 .
![]() | |
2. |
蒋晓晗,聂笑一. 甘蓝型油菜基因组缺失变异检测研究. 粮油与饲料科技. 2024(06): 199-201 .
![]() |