Citation: | Chen BS,Miao LF,Li DD,Tian MJ,Zhou JJ,Yang F. Differential eco-physiological responses to waterlogging and salinity stresses between Cleistocalyx operculatus (Roxb.) Merr. et Perry and Syzygium cumini (L.) Skeels seedlings[J]. Plant Science Journal,2023,41(5):677−686. DOI: 10.11913/PSJ.2095-0837.22316 |
Plants grown in coastal and estuarine riparian zones are vulnerable to combined waterlogging and salt stresses. In this study, three stress treatments, including waterlogging, salinity (350 mmol/L), and combined salinity-waterlogging (175 mmol/L), were used to compare the eco-physiological responses of Cleistocalyx operculatus (Roxb.) Merr. et Perry and Syzygium cumini (L.) Skeels seedlings, two plant species with strong waterlogging tolerance, to different stress conditions. Results showed that after 24 d, plant height growth, leaf area, total biomass, root activity, net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) decreased in both species under all three treatments, while leaf relative conductivity and peroxidase (POD) activity increased. In the waterlogging treatment, intercellular CO2 concentration (Ci) continuously declined with treatment duration in both species. In the salinity treatment and combined salinity-waterlogging treatment, Ci decreased at first and then increased. Compared to the waterlogging treatment, the combined salinity-waterlogging treatment resulted in a significant reduction in leaf area, total biomass, Pn, Tr, and Gs in both species, but a significant increase in root shoot ratio, relative conductivity, and POD activity. Compared with S. cumini, C. operculatus seedlings formed adventitious roots after 24 d of waterlogging treatment, and exhibited higher root, and POD activities, with less membrane damage. Thus, C. operculatus possessed stronger waterlogging resistance than S. cumini. However, compared to C. operculatus seedlings, S. cumini demonstrated higher leaf area, biomass, root activity, photosynthesis efficiency, superoxide dismutase and POD activities, but lower malondialdehyde content under salinity and combined salinity-waterlogging treatments. Therefore, S. cumini showed stronger salt tolerance compared to C. operculatus.
[1] |
罗涛,杨小波,黄云峰,叶凡,党金玲. 中国海岸沙生植被研究进展[J]. 亚热带植物科学,2008,37(1):70−75. doi: 10.3969/j.issn.1009-7791.2008.01.020
Luo T,Yang XB,Huang YF,Ye F,Dang JL. Research progress of psammophilous vegetation on coasts in China[J]. Subtropical Plant Science,2008,37 (1):70−75. doi: 10.3969/j.issn.1009-7791.2008.01.020
|
[2] |
Li DD,Cisse EHM,Guo LY,Zhang J,Miao LF,Yang F. Comparable and adaptable strategies to waterlogging stress regulated by adventitious roots between two contrasting species[J]. Tree Physiol,2022,42 (5):971−988. doi: 10.1093/treephys/tpab165
|
[3] |
郑小兰,王瑞娇,赵群法,刘勇鹏,王媛媛,孙治强. 根际氧含量影响植物生长的生理生态机制研究进展[J]. 植物生态学报,2017,41(7):805−814. doi: 10.17521/cjpe.2017.0042
Zheng XL,Wang RJ,Zhao QF,Liu YP,Wang YY,Sun ZQ. Ecophysiological mechanisms of plant growth under the influence of rhizosphere oxygen con-centration:a review[J]. Chinese Journal of Plant Ecology,2017,41 (7):805−814. doi: 10.17521/cjpe.2017.0042
|
[4] |
Parolin P. Submergence tolerance vs. escape from submergence:two strategies of seedling establishment in Amazonian floodplains[J]. Environ Exp Bot,2002,48 (2):177−186. doi: 10.1016/S0098-8472(02)00036-9
|
[5] |
孙兰菊,岳国峰,王金霞,周百成. 植物耐盐机制的研究进展[J]. 海洋科学,2001,25(4):28−31. doi: 10.3969/j.issn.1000-3096.2001.04.009
Sun LJ,Yue GF,Wang JX,Zhou BC. Mechanism of salt stress tolerance in plants[J]. Marine Sciences,2001,25 (4):28−31. doi: 10.3969/j.issn.1000-3096.2001.04.009
|
[6] |
Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59:651−681. doi: 10.1146/annurev.arplant.59.032607.092911
|
[7] |
陈元松. 茳芏及其变种短叶茳芏对盐胁迫和淹水胁迫的适应性研究[D]. 南宁: 广西大学, 2011: 1-10.
|
[8] |
Mubeen,Singh AK,Singh SP,Khan M,Husain R,Mued M. Effects of waterlogging and salinity stresses on biochemical changes in tolerant and susceptible varieties of wheat (Triticum aestivum L.)[J]. J Pharmacogn Phytochem,2016,5 (4):415−419.
|
[9] |
姜百惠,丁扬,苗灵凤,杨帆. 淹水和盐胁迫对降香黄檀植株生理生态特性的影响[J]. 海南大学学报(自然科学版),2020,38(2):132−140.
Jiang BH,Ding Y,Miao LF,Yang F. Effects of waterlogging and salt stresses on the physiological and ecological characteristics of Dalbergia odorifera seedling[J]. Natural Science Journal of Hainan University,2020,38 (2):132−140.
|
[10] |
林龙,罗佳佳,刘酉琳,杨先吉,张国防. 水盐胁迫对榕树的生理生化影响的研究[J]. 西南林业大学学报,2020,40(1):46−51. doi: 10.11929/j.swfu.201904041
Lin L,Luo JJ,Liu YL,Yang XJ,Zhang GF. Study on physiological and biochemical effects of water and salt stress on Ficus microcarpa[J]. Journal of Southwest Forestry University,2020,40 (1):46−51. doi: 10.11929/j.swfu.201904041
|
[11] |
杨东,万福绪,李盟. 水盐胁迫对上海4个防护林树种生长和生理特性的影响[J]. 水土保持研究,2014,21(1):254−260. doi: 10.13869/j.cnki.rswc.2014.01.050
Yang D,Wan FX,Li M. Effects of water-salt stress on growth and physiological index of 4 protective forest tree species in Shanghai[J]. Research of Soil and Water Conservation,2014,21 (1):254−260. doi: 10.13869/j.cnki.rswc.2014.01.050
|
[12] |
张娟,苗灵凤,李大东,郭璐瑶,王海波,杨帆. 外源吲哚乙酸、脱落酸调控下水翁水淹胁迫耐受性比较[J]. 应用与环境生物学报,2022,28(1):222−229.
Zhang J,Miao LF,Li DD,Guo LY,Wang HB,Yang F. Effects of exogenous indoleacetic acid and abscisic acid on the tolerance of Cleistocalyx operculatus to waterlogging stress[J]. Chinese Journal of Applied & Environmental Biology,2022,28 (1):222−229.
|
[13] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74-77.
|
[14] |
汤绍虎, 罗充. 植物生理学实验教程[M]. 重庆: 西南师范大学出版社, 2012: 100-110.
|
[15] |
Liu RJ,Shi HT,Wang YP,Chen S,Deng J,et al. Comparative physiological analysis of lotus (Nelumbo nucifera) cultivars in response to salt stress and cloning of NnCIPK genes[J]. Sci Hortic,2014,173:29−36. doi: 10.1016/j.scienta.2014.04.032
|
[16] |
杨鹏,胥晓. 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响[J]. 植物生态学报,2012,36(1):81−87. doi: 10.3724/SP.J.1258.2012.00081
Yang P,Xu X. Effects of waterlogging stress on the growth and physiological characteristics of male and female Populus cathayana seedlings[J]. Chinese Journal of Plant Ecology,2012,36 (1):81−87. doi: 10.3724/SP.J.1258.2012.00081
|
[17] |
Li YL,Fan XR,Shen QR. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants[J]. Plant Cell Environ,2008,31 (1):73−85.
|
[18] |
Rich SM,Ludwig M,Colmer TD. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii[J]. Ann Bot,2012,110 (2):405−414. doi: 10.1093/aob/mcs051
|
[19] |
Ayi Q,Zeng B,Liu JH,Li SQ,van Bodegom PM,Cornelissen JHC. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants[J]. Ann Bot,2016,118 (4):675−683. doi: 10.1093/aob/mcw051
|
[20] |
陈涛,王贵美,沈伟伟,李小珍,祁建民,等. 盐胁迫对红麻幼苗生长及抗氧化酶活性的影响[J]. 植物科学学报,2011,29(4):493−501.
Chen T,Wang GM,Shen WW,Li XZ,Qi JM,et al. Effect of salt stress on the growth and antioxidant enzyme activity of kenaf seedlings[J]. Plant Science Journal,2011,29 (4):493−501.
|
[21] |
高冠龙,冯起,张小由,司建华,鱼腾飞. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究,2018,35(4):929−937. doi: 10.13866/j.azr.2018.04.22
Gao GL,Feng Q,Zhang XY,Si JH,Yu TF. An overview of stomatal and non-stomatal limitations to photosynthesis of plants[J]. Arid Zone Research,2018,35 (4):929−937. doi: 10.13866/j.azr.2018.04.22
|
[22] |
Barrett-Lennard EG. The interaction between waterlogging and salinity in higher plants:causes,consequences and implications[J]. Plant Soil,2003,253 (1):35−54. doi: 10.1023/A:1024574622669
|
[23] |
Zheng CF,Jiang D,Liu FL,Dai TB,Jing Q,Cao WX. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis,chloroplast ATP synthesis,and antioxidant capacity in wheat[J]. Plant Sci,2009,176 (4):575−582. doi: 10.1016/j.plantsci.2009.01.015
|
[24] |
Trought MCT,Drew MC. The development of waterlogging damage in young wheat plants in anaerobic solution cultures[J]. J Exp Bot,1980,31 (6):1573−1585. doi: 10.1093/jxb/31.6.1573
|
[25] |
Suhan D,Anita K,Sunita S. Effect of waterlogging and salinity on antioxidative system in pigeonpea plant leaves at different stages of development[J]. Res Crops,2017,18 (3):559−568. doi: 10.5958/2348-7542.2017.00096.1
|
[26] |
Mubeen K,Khan AH,Singh SP,Singh AK,Gautam AR,et al. Effect of waterlogging and salinity stress on physiological and biochemical changes in tolerant and susceptible varieties of Triticum aestivum[J]. Int J Curr Microbiol Appl Sci,2017,6 (5):975−981. doi: 10.20546/ijcmas.2017.605.107
|
[27] |
Turkan I,Demiral T,Sekmen AH. The regulation of antioxidant enzymes in two Plantago species differing in salinity tolerance under combination of waterlogging and salinity[J]. Funct Plant Biol,2013,40 (5):484−493. doi: 10.1071/FP12147
|
[28] |
Falakboland Z. Understanding the physiology of combined salinity and waterlogging tolerance in barley[D]. Tasmania: University of Tasmania, 2016: 1−10.
|
[29] |
Lal M,Duhan S,Bala S,Dinesh,Sheokand S. Influence of waterlogging,salinity and their combination on membrane injury,lipid peroxidation,plant biomass and yield in pigeon pea (Cajanus cajan L. Millsp. ) genotypes[J]. Bioscan,2016,11 (2):795−800.
|
1. |
周静静,苗灵凤,李大东,田梦洁,杨帆. 旱-盐复合胁迫对降香黄檀幼苗生长和生理生化特性的影响. 热带亚热带植物学报. 2025(02): 197-206 .
![]() |