Citation: | Zhang QL,Li JZ,Wang ZM,Dai SL. Research progress on the genetic regulatory mechanism of flowering in Chrysanthemum[J]. Plant Science Journal,2023,41(6):768−780. DOI: 10.11913/PSJ.2095-0837.23004 |
Flowering represents a critical transition in plant development, shifting from the vegetative to reproductive growth stages. In ornamental plants, the timing of flowering significantly impacts marketability and economic value. Plant flowering is regulated by complex internal and external signals. Studies on the model plant Arabidopsis thaliana have identified six primary pathways related to flowering regulation. These independent but intersecting pathways form a complex genetic regulatory network. Chrysanthemum × morifolium, a famous flower originating from China, holds a considerable share of the world flower market. However, its typical short-day flowering requirements not only increase production costs but also limit its application scope. Based on the flowering regulatory networks of higher plants, this review discusses current research progress on the genetic regulatory mechanisms underlying chrysanthemum flowering, thus providing theoretical guidance for the breeding and improvement of flowering time, as well as new insights into the flowering mechanisms of higher plants.
[1] |
舒黄英,郝园园,蔡庆泽,王振,朱国鹏,等. 模式植物拟南芥开花时间分子调控研究进展[J]. 植物科学学报,2017,35(4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603
Shu HY,Hao YY,Cai QZ,Wang Z,Zhu GP,et al. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana[J]. Plant Science Journal,2017,35 (4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603
|
[2] |
张秋玲,刘海鹏,高康,孔德元,戴思兰. 盆栽菊花反季节开花调控技术研究[J]. 黑龙江农业科学,2021(9):62−67.
Zhang QL,Liu HP,Gao K,Kong DY,Dai SL. Research on anti-seasonal flowering control technology of potted chrysanthemum[J]. Heilongjiang Agricultural Sciences,2021 (9):62−67.
|
[3] |
陈俊愉, 程绪珂. 富贵神仙品(中国花经节编)[M]//王明明. 大匠之门5. 南宁: 广西美术出版社, 2015: 1-100.
|
[4] |
谯德惠. 花卉产销实现平稳增长——2012年全国花卉统计数据分析[J]. 中国花卉园艺,2013(15):26−31.
|
[5] |
李小青. 我国花卉出口贸易的现状、问题及对策[J]. 中国市场,2022(29):75−78. doi: 10.13939/j.cnki.zgsc.2022.29.075
|
[6] |
张引潮. 坚定信心锚定花卉业高质量发展——在2022全国花卉产销形势分析会上的讲话[J]. 中国花卉园艺,2022(4):10−15. doi: 10.3969/j.issn.1009-8496.2022.4.zghhyy202204003
|
[7] |
尚嘉琪. 地被菊花期改良育种技术研究[D]. 晋中: 山西农业大学, 2017: 1-10.
|
[8] |
古晓红,李方舟,张海生,杨婷婷,王军. 大豆常规杂交育种和生物分子育种的优劣对比[J]. 种子科技,2020,38(17):29−30. doi: 10.3969/j.issn.1005-2690.2020.17.013
|
[9] |
雒新艳,张俊丽,张二海. 盆栽小菊育种研究进展[J]. 山东林业科技,2021,51(1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019
Luo XY,Zhang JL,Zhang EH. Research progress on potted chrysanthemum breeding[J]. Journal of Shandong Forestry Science and Technology,2021,51 (1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019
|
[10] |
赵小刚. 日中性小菊新品种选育及小菊开花期遗传分析[D]. 北京: 北京林业大学, 2019: 1-10.
|
[11] |
蒋志敏,王威,储成才. 植物氮高效利用研究进展和展望[J]. 生命科学,2018,30(10):1060−1071. doi: 10.13376/j.cbls/2018128
Jiang ZM,Wang W,Chu CC. Towards understanding of nitrogen use efficiency in plants[J]. Chinese Bulletin of Life Sciences,2018,30 (10):1060−1071. doi: 10.13376/j.cbls/2018128
|
[12] |
Gojon A. Nitrogen nutrition in plants:rapid progress and new challenges[J]. J Exp Bot,2017,68 (10):2457−2462. doi: 10.1093/jxb/erx171
|
[13] |
Srikanth A,Schmid M. Regulation of flowering time:all roads lead to Rome[J]. Cell Mol Life Sci,2011,68 (12):2013−2037. doi: 10.1007/s00018-011-0673-y
|
[14] |
Blümel M,Dally N,Jung C. Flowering time regulation in crops:what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol,2015,32:121−129. doi: 10.1016/j.copbio.2014.11.023
|
[15] |
孙昌辉,邓晓建,方军,储成才. 高等植物开花诱导研究进展[J]. 遗传,2007,29(10):1182−1190. doi: 10.3321/j.issn:0253-9772.2007.10.005
Sun CH,Deng XJ,Fang J,Chu CC. An overview of flowering transition in higher plants[J]. Hereditas (Beijing)
|
[16] |
张艺能,周玉萍,陈琼华,黄小玲,田长恩. 拟南芥开花时间调控的分子基础[J]. 植物学报,2014,49(4):469−482. doi: 10.3724/SP.J.1259.2014.00469
Zhang YN,Zhou YP,Chen QH,Huang XL,Tian CE. Molecular basis of flowering time regulation in Arabidopsis[J]. Chinese Bulletin of Botany,2014,49 (4):469−482. doi: 10.3724/SP.J.1259.2014.00469
|
[17] |
Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana[J]. Annu Rev Plant Biol,2004,55:521−535. doi: 10.1146/annurev.arplant.55.031903.141644
|
[18] |
Wahl V,Ponnu J,Schlereth A,Arrivault S,Langenecker T,et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science,2013,339 (6120):704−707. doi: 10.1126/science.1230406
|
[19] |
Teotia S,Tang GL. To bloom or not to bloom:role of MicroRNAs in plant flowering[J]. Mol Plant,2015,8 (3):359−377. doi: 10.1016/j.molp.2014.12.018
|
[20] |
Achard P,Cheng H,de Grauwe L,Decat J,Schoutteten H,et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science,2006,311 (5757):91−94. doi: 10.1126/science.1118642
|
[21] |
Balasubramanian S,Sureshkumar S,Lempe J,Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics,2006,2 (7):e106. doi: 10.1371/journal.pgen.0020106
|
[22] |
Martínez C,Pons E,Prats G,León J. Salicylic acid regulates flowering time and links defence responses and reproductive development[J]. Plant J,2004,37 (2):209−217. doi: 10.1046/j.1365-313X.2003.01954.x
|
[23] |
Vidal EA,Moyano TC,Canales J,Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana[J]. J Exp Bot,2014,65 (19):5611−5618. doi: 10.1093/jxb/eru326
|
[24] |
Kitamoto N,Ueno S,Takenaka A,Tsumura Y,Washitani I,Ohsawa R. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae)[J]. Am J Bot,2006,93 (2):226−233. doi: 10.3732/ajb.93.2.226
|
[25] |
Elzinga JA,Atlan A,Biere A,Gigord L,Weis AE,Bernasconi G. Time after time:flowering phenology and biotic interactions[J]. Trends Ecol Evol,2007,22 (8):432−439. doi: 10.1016/j.tree.2007.05.006
|
[26] |
Lemoine NP,Doublet D,Salminen JP,Burkepile DE,Parker JD. Responses of plant phenology,growth,defense,and reproduction to interactive effects of warming and insect herbivory[J]. Ecology,2017,98 (7):1817−1828. doi: 10.1002/ecy.1855
|
[27] |
Vermeulen PJ. On selection for flowering time plasticity in response to density[J]. New Phytol,2015,205 (1):429−439. doi: 10.1111/nph.12984
|
[28] |
万亚楠. 菊花的花期调控方法初探[J]. 现代园艺,2013(20):50−51. doi: 10.3969/j.issn.1006-4958.2013.20.035
|
[29] |
张树林, 戴思兰. 中国菊花全书[M]. 北京: 中国林业出版社, 2013: 1-100.
|
[30] |
陈洪国,马容明. GA3对菊花开花和花瓣某些生理生化指标的影响[J]. 安徽农业科学,2006,34(6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005
Chen HG,Ma RM. Effects of GA3 on the flowering and some physiological indexes of chrysanthemum[J]. Journal of Anhui Agricultural Sciences,2006,34 (6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005
|
[31] |
刘敏,丁江南,王飞翔,于晓英. 叶面喷施赤霉素对瓜叶菊生长与开花的影响[J]. 天津农业科学,2010,16(6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014
Liu M,Ding JN,Wang FX,Yu XY. Effects of gibberellins treatment on growth and flowering of Senecio × hybridus[J]. Tianjin Agricultural Sciences,2010,16 (6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014
|
[32] |
张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响[J]. 山东农业大学学报(自然科学版),2020,51(4):611−616. doi: 10.3969/j.issn.1000-2324.2020.04.005
Zhang QL,Yang XZ,Dai SL,Zhang Q,Luo H,Zhang BH. Effect of different N,P,K proportions on the development of Chrysanthemum vestitum[J]. Journal of Shandong Agricultural University (Natural Science Edition)
|
[33] |
张秋玲,杨秀珍,戴思兰,邱丹丹,董南希,李清清. 不同氮水平下毛华菊形态性状的差异分析[J]. 中国农业大学学报,2020,25(5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07
Zhang QL,Yang XZ,Dai SL,Qiu DD,Dong NX,Li QQ. Difference analysis of morphological traits of Chrysanthemum vestitum under different nitrogen levels[J]. Journal of China Agricultural University,2020,25 (5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07
|
[34] |
马朝峰. 甘菊和毛华菊PHYA和PHYB同源基因表达分析及ClPHYB功能验证[D]. 北京: 北京林业大学, 2019: 1-10.
|
[35] |
王富刚,张静,张雄. 光敏色素与植物的光形态建成[J]. 基因组学与应用生物学,2017,36(8):3167−3171. doi: 10.13417/j.gab.036.003167
Wang FG,Zhang J,Zhang X. Phytochromes and plant photomorphogenesis[J]. Genomics and Applied Biology,2017,36 (8):3167−3171. doi: 10.13417/j.gab.036.003167
|
[36] |
王君杰,田翔,秦慧彬,王海岗,曹晓宁,等. 光周期对糜子生长发育及叶片内源激素的调控效应[J]. 中国农业科学,2021,54(2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005
Wang JJ,Tian X,Qin HB,Wang HG,Cao XN,et al. Regulation effects of photoperiod on growth and leaf endogenous hormones in broomcorn millet[J]. Scientia Agricultura Sinica,2021,54 (2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005
|
[37] |
贺玉利. 菊花矮化及提前开花栽培技术[J]. 北方园艺,2003(3):80. doi: 10.3969/j.issn.1001-0009.2003.03.055
|
[38] |
姜贝贝,房伟民,陈发棣,赵宏波,顾俊杰. 植株营养生长天数对切花菊花芽分化与品质的影响[J]. 中国农业科学,2008,41(6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024
Jiang BB,Fang WM,Chen FD,Zhao HB,Gu JJ. Effect of vegetative growth days on flower bud differentiation and quality of cut chrysanthemum[J]. Scientia Agricultura Sinica,2008,41 (6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024
|
[39] |
陆思宇,杨再强,杨立,张源达,郑涵. 不同光周期对菊花生长发育及内源激素的影响[J]. 华北农学报,2021,36(6):106−115. doi: 10.7668/hbnxb.20192386
Lu SY,Yang ZQ,Yang L,Zhang YD,Zheng H. Effects of different photoperiods on the growth and development process and endogenous hormones of chrysanthemum[J]. Acta Agriculturae Boreali-Sinica,2021,36 (6):106−115. doi: 10.7668/hbnxb.20192386
|
[40] |
陆思宇. 光周期对‘红面’菊花生长发育的影响机理[D]. 南京: 南京信息工程大学, 2022: 1-10.
|
[41] |
Hsu PY,Harmer SL. Wheels within wheels:the plant circadian system[J]. Trends Plant Sci,2014,19 (4):240−249. doi: 10.1016/j.tplants.2013.11.007
|
[42] |
Yu JW,Rubio V,Lee NY,Bai SL,Lee SY,et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability[J]. Molecular Cell,2008,32 (5):617−630. doi: 10.1016/j.molcel.2008.09.026
|
[43] |
Song YH,Shim JS,Kinmonth-Schultz HA,Imaizumi T. Photoperiodic flowering:time measurement mechanisms in leaves[J]. Annu Rev Plant Biol,2015,66:441−464. doi: 10.1146/annurev-arplant-043014-115555
|
[44] |
Shim JS,Kubota A,Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration[J]. Plant Physiol,2017,173 (1):5−15. doi: 10.1104/pp.16.01327
|
[45] |
Jing YJ,Guo Q,Lin RC. The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering[J]. Plant Physiol,2019,181 (2):656−668. doi: 10.1104/pp.19.00596
|
[46] |
Jing YJ,Guo Q,Zha P,Lin RC. The chromatin‐remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis[J]. Plant Cell Environ,2019,42 (8):2495−2507. doi: 10.1111/pce.13557
|
[47] |
Kadman-Zahavi A,Yahel H. Phytochrome effects in night-break illuminations on flowering of Chrysanthemum[J]. Physiol Plant,1971,25 (1):90−93. doi: 10.1111/j.1399-3054.1971.tb01094.x
|
[48] |
Jeong SW,Park S,Jin JS,Seo ON,Kim GS,et al. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium)[J]. J Agric Food Chem,2012,60 (39):9793−9800. doi: 10.1021/jf302272x
|
[49] |
Nissim-Levi A,Kitron M,Nishri Y,Ovadia R,Forer I,et al. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium[J]. Sci Hortic,2019,254:77−83. doi: 10.1016/j.scienta.2019.04.080
|
[50] |
Yang LW,Wen XH,Fu JX,Dai SL. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods[J]. Hortic Res,2018,5:58. doi: 10.1038/s41438-018-0063-9
|
[51] |
Yang LW,Fu JX,Qi S,Hong Y,Huang H,Dai SL. Molecular cloning and function analysis of ClCRY1a and ClCRY1b,two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition[J]. Gene,2017,617:32−43. doi: 10.1016/j.gene.2017.02.020
|
[52] |
Wang SJ,Zhang CL,Zhao J,Li RH,Lv JH. Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods[J]. PeerJ,2019,7:e6420. doi: 10.7717/peerj.6420
|
[53] |
陈丹丹,邹庆军,郭巧生,汪涛. 短日照处理对野菊CO基因表达量的影响[J]. 中国中药杂志,2019,44(4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014
Chen DD,Zou QJ,Guo QS,Wang T. Effect of short-day treatment on expression of CO gene in Chrysanthemum indicum[J]. China Journal of Chinese Materia Medica,2019,44 (4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014
|
[54] |
Oda A,Narumi T,Li TP,Kando T,Higuchi Y,et al. CsFTL3,a chrysanthemum FLOWERING LOCUS T-like gene,is a key regulator of photoperiodic flowering in chrysanthemums[J]. J Exp Bot,2012,63 (3):1461−1477. doi: 10.1093/jxb/err387
|
[55] |
Higuchi Y,Narumi T,Oda A,Nakano Y,Sumitomo K,et al. The gated induction system of a systemic floral inhibitor,antiflorigen,determines obligate short-day flowering in chrysanthemums[J]. Proc Natl Acad Sci USA,2013,110 (42):17137−17142. doi: 10.1073/pnas.1307617110
|
[56] |
Sun J,Wang H,Ren LP,Chen SM,Chen FD,et al. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum[J]. Hortic Res,2017,4:17001. doi: 10.1038/hortres.2017.1
|
[57] |
Zuo L,Wang T,Guo Q,Yang F,Zou Q,et al. Conserved CO-FT module regulating flowering time in Chrysanthemum indicum L.[J]. Russ J Plant Physiol,2021,68 (6):1018−1028. doi: 10.1134/S102144372106025X
|
[58] |
Oda A,Higuchi Y,Hisamatsu T. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX[J]. Plant Sci,2017,259:86−93. doi: 10.1016/j.plantsci.2017.03.007
|
[59] |
Oda A,Higuchi Y,Hisamatsu T. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum[J]. Plant Sci,2020,293:110417. doi: 10.1016/j.plantsci.2020.110417
|
[60] |
赵航, 梁丽, 张淑欣. 温度调控植物开花的研究进展[J/OL]. 分子植物育种, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html.
Zhao H, Liang L, Zhang SX. Research progress on temperature-regulated of plant flowering[J]. Molecular Plant Breeding, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html.
|
[61] |
Laurie DA. Comparative genetics of flowering time[J]. Plant Mol Biol,1997,35 (1-2):167−177.
|
[62] |
Trevaskis B,Hemming MN,Dennis ES,Peacock WJ. The molecular basis of vernalization-induced flowering in cereals[J]. Trends Plant Sci,2007,12 (8):352−357. doi: 10.1016/j.tplants.2007.06.010
|
[63] |
Bouché F,Woods DP,Amasino RM. Winter memory throughout the plant kingdom:different paths to flowering[J]. Plant Physiol,2017,173 (1):27−35. doi: 10.1104/pp.16.01322
|
[64] |
Kim DH,Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Dev Cell,2017,40 (3):302−312.e4. doi: 10.1016/j.devcel.2016.12.021
|
[65] |
Xu SJ,Xiao J,Yin F,Guo XY,Xing LJ,et al. The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat[J]. Plant Physiol,2019,180 (3):1436−1449. doi: 10.1104/pp.19.00081
|
[66] |
Lutz U,Nussbaumer T,Spannagl M,Diener J,Mayer KF,Schwechheimer C. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis[J]. eLife,2017,6:e22114. doi: 10.7554/eLife.22114
|
[67] |
Kumar SV,Lucyshyn D,Jaeger KE,Alós E,Alvey E,et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature,2012,484 (7393):242−245. doi: 10.1038/nature10928
|
[68] |
Song YH,Ito S,Imaizumi T. Flowering time regulation:photoperiod- and temperature-sensing in leaves[J]. Trends Plant Sci,2013,18 (10):575−583. doi: 10.1016/j.tplants.2013.05.003
|
[69] |
Jin SY,Ahn JH. Regulation of flowering time by ambient temperature:repressing the repressors and activating the activators[J]. New Phytol,2021,230 (3):938−942. doi: 10.1111/nph.17217
|
[70] |
Posé D,Verhage L,Ott F,Yant L,Mathieu J,et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature,2013,503 (7476):414−417. doi: 10.1038/nature12633
|
[71] |
Kim JJ,Lee JH,Kim W,Jung HS,Huijser P,Ahn JH. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol,2012,159 (1):461−478. doi: 10.1104/pp.111.192369
|
[72] |
Jung JH,Seo PJ,Ahn JH,Park CM. Arabidopsis RNA-binding protein FCA regulates MicroRNA172 processing in thermosensory flowering[J]. J Biol Chem,2012,287 (19):16007−16016. doi: 10.1074/jbc.M111.337485
|
[73] |
Kumar SV,Wigge PA. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell,2010,140 (1):136−147. doi: 10.1016/j.cell.2009.11.006
|
[74] |
Zheng SZ,Hu HM,Ren HM,Yang ZL,Qiu Q,et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nat Commun,2019,10 (1):1303. doi: 10.1038/s41467-019-09310-x
|
[75] |
Huang H,Nusinow DA. Into the evening:complex interactions in the Arabidopsis circadian clock[J]. Trends Genet,2016,32 (10):674−686. doi: 10.1016/j.tig.2016.08.002
|
[76] |
Ezer D,Jung JH,Lan H,Biswas S,Gregoire L,et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nat Plants,2017,3 (7):17087. doi: 10.1038/nplants.2017.87
|
[77] |
Zhao H,Xu D,Tian T,Kong FY,Lin K,et al. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis[J]. Plant Sci,2021,303:110786. doi: 10.1016/j.plantsci.2020.110786
|
[78] |
Cho AR,Kim YJ. Night temperature determines flowering time and quality of Chrysanthemum morifolium during a high day temperature[J]. J Hortic Sci Biotechnol,2021,96 (2):239−248. doi: 10.1080/14620316.2020.1834460
|
[79] |
Cockshull KE,Kofranek AM. High night temperatures delay flowering,produce abnormal flowers and retard stem growth of cut-flower chrysanthemums[J]. Sci Hortic,1994,56 (3):217−234. doi: 10.1016/0304-4238(94)90004-3
|
[80] |
Nakano Y,Higuchi Y,Sumitomo K,Oda A,Hisamatsu T,Naro N. Delay of flowering by high temperature in chrysanthemum:heat-sensitive time-of-day and heat effects on CsFTL3 and CsAFT gene expression[J]. J Hortic Sci Biotechnol,2015,90 (2):143−149. doi: 10.1080/14620316.2015.11513165
|
[81] |
Nakano Y,Takase T,Sumitomo K,Suzuki S,Tsuda-Kawamura K,Hisamatsu T. Delay of flowering at high temperature in chrysanthemum:duration of darkness and transitions in lighting determine daily peak heat sensitivity[J]. Hortic J,2020,89 (5):602−608. doi: 10.2503/hortj.UTD-192
|
[82] |
Luo C,Liu H,Ren JN,Chen DL,Cheng X,et al. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene,AtCRAP2,promotes flowering under unsuitable low-temperatures in chrysanthemum[J]. Plant Physiol Biochem,2020,146:220−230. doi: 10.1016/j.plaphy.2019.11.022
|
[83] |
Lyu J,Aiwaili P,Gu ZY,Xu YJ,Zhang YH,et al. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature[J]. Plant J,2022,112 (5):1159−1175. doi: 10.1111/tpj.16002
|
[84] |
Sumitomo K,Nakano Y,Hisamatsu T,Oda A,Narumi-Kawasaki T,et al. Delayed flowering due to ‘cold memory’ is regulated by suppression of FLOWERING LOCUS T-like 3 gene in chrysanthemums[J]. J Hortic Sci Biotechnol,2023,98 (3):334−341. doi: 10.1080/14620316.2022.2136112
|
[85] |
Zhang XY,Zhang P,Wang G,Bao ZL,Ma FF. Chrysanthemum lavandulifolium homolog ClMAD1 modulates the floral transition during temperature shift[J]. Environ Exp Bot,2022,194:104720. doi: 10.1016/j.envexpbot.2021.104720
|
[86] |
Sumitomo K,Li TP,Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL,a chrysanthemum FLORICAULA/LEAFY homologous gene[J]. Plant Sci,2009,176 (5):643−649. doi: 10.1016/j.plantsci.2009.02.003
|
[87] |
Wilson RN,Heckman JW,Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant Physiol,1992,100 (1):403−408. doi: 10.1104/pp.100.1.403
|
[88] |
Murase K,Hirano Y,Sun TP,Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature,2008,456 (7221):459−463. doi: 10.1038/nature07519
|
[89] |
Yan JD,Li XM,Zeng BJ,Zhong M,Yang JX,et al. FKF1 F‐box protein promotes flowering in part by negatively regulating DELLA protein stability under long‐day photoperiod in Arabidopsis[J]. J Integr Plant Biol,2020,62 (11):1717−1740. doi: 10.1111/jipb.12971
|
[90] |
Achard P,Herr A,Baulcombe DC,Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development,2004,131 (14):3357−3365. doi: 10.1242/dev.01206
|
[91] |
Allen RS,Li JY,Stahle MI,Dubroué A,Gubler F,Millar AA. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proc Natl Acad Sci USA,2007,104 (41):16371−16376. doi: 10.1073/pnas.0707653104
|
[92] |
Pharis RP. Flowering of Chrysanthemum under non-inductive long days by gibberellins and N6-benzyladenine[J]. Planta,1972,105 (3):205−212. doi: 10.1007/BF00385392
|
[93] |
Dong B,Deng Y,Wang HB,Gao R,Stephen GU,et al. Gibberellic acid signaling is required to induce flowering of chrysanthemums grown under both short and long days[J]. Int J Mol Sci,2017,18 (6):1259. doi: 10.3390/ijms18061259
|
[94] |
Yang YJ,Ma C,Xu YJ,Wei Q,Imtiaz M,et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. Plant Cell,2014,26 (5):2038−2054. doi: 10.1105/tpc.114.124867
|
[95] |
Zhu L,Guan YX,Liu YN,Zhang ZH,Jaffar MA,et al. Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism[J]. Hortic Res,2020,7 (1):96. doi: 10.1038/s41438-020-0317-1
|
[96] |
Wu G,Park MY,Conway SR,Wang JW,Weigel D,Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell,2009,138 (4):750−759. doi: 10.1016/j.cell.2009.06.031
|
[97] |
Wang JW,Czech B,Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell,2009,138 (4):738−749. doi: 10.1016/j.cell.2009.06.014
|
[98] |
Fornara F,Coupland G. Plant phase transitions make a SPLash[J]. Cell,2009,138 (4):625−627. doi: 10.1016/j.cell.2009.08.011
|
[99] |
Yang HC,Han ZF,Cao Y,Fan D,Li H,et al. A companion cell–dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression[J]. PLoS Genet,2012,8 (4):e1002664. doi: 10.1371/journal.pgen.1002664
|
[100] |
Song AP,Gao TW,Wu D,Xin JJ,Chen SM,et al. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors[J]. Plant Physiol Biochem,2016,102:10−16. doi: 10.1016/j.plaphy.2016.02.009
|
[101] |
朱文静. 菊花转录因子CmSPL4. 1/5. 1/6/13的克隆与功能鉴定[D]. 南京: 南京农业大学, 2020: 1-10.
|
[102] |
魏倩. 菊花核因子NF-YB调节开花时间和干旱胁迫耐性的机理分析[D]. 北京: 中国农业大学, 2015: 1-10.
|
[103] |
Wei Q,Ma C,Xu YJ,Wang TL,Chen YY,et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun,2017,8 (1):829. doi: 10.1038/s41467-017-00812-0
|
[104] |
马超. 菊花成花调控机制: 第三届全国植物开花·衰老与采后生物学大会论文摘要集[C]. 杭州: 中国植物生理与植物分子生物学学会, 2019.
|
[105] |
Jiang JF, Zhang ZX, Hu Q, Zhu YQ, Gao Z, et al. The flowering repressor SVP recruits the TOPLESS co-repressor to control flowering in chrysanthemum and Arabidopsis[J/OL]. BioRxiv, 2021. doi: 10.1101/2021.11.23.469726.
|
[106] |
Wang CQ,Guthrie C,Sarmast MK,Dehesh K. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription,defining a flowering time checkpoint in Arabidopsis[J]. Plant Cell,2014,26 (9):3589−3602. doi: 10.1105/tpc.114.130252
|
[107] |
Yuan L,Yu YJ,Liu MM,Song Y,Li HM,et al. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes[J]. Plant Cell,2021,33 (8):2602−2617. doi: 10.1093/plcell/koab133
|
[108] |
Zhang T. Tick-tock:BBX19 functions as a novel regulator of the circadian clock[J]. Plant Cell,2021,33 (8):2511−2512. doi: 10.1093/plcell/koab142
|
[109] |
Wang LJ,Sun J,Ren LP,Zhou M,Han XY,et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum[J]. Plant Biotechnol J,2020,18 (7):1562−1572. doi: 10.1111/pbi.13322
|
[110] |
Wang LJ,Cheng H,Wang Q,Si CN,Yang YM,et al. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer chrysanthemum[J]. Hortic Res,2021,8:79. doi: 10.1038/s41438-021-00516-z
|
[111] |
Chen H,Huang F,Liu YN,Cheng PL,Guan ZY,et al. Constitutive expression of chrysanthemum CmBBX29 delays flowering time in transgenic Arabidopsis[J]. Can J Plant Sci,2020,100 (1):86−94. doi: 10.1139/cjps-2018-0154
|
[112] |
Ping Q,Cheng PL,Huang F,Ren LP,Cheng H,et al. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering[J]. Plant Physiol Biochem,2019,144:480−487. doi: 10.1016/j.plaphy.2019.10.019
|
[113] |
Morita S,Murakoshi Y,Hojo A,Chisaka K,Harada T,Satoh S. Early flowering and increased expression of a FLOWERING LOCUS T-like gene in chrysanthemum transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4)[J]. J Plant Biol,2012,55 (5):398−405. doi: 10.1007/s12374-012-0109-8
|
[114] |
Huang YY,Xing XJ,Tang Y,Jin JY,Ding L,et al. An ethylene‐responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum[J]. Plant Cell Environ,2022,45 (5):1442−1456. doi: 10.1111/pce.14261
|
[115] |
Gomi K. Jasmonic acid:an essential plant hormone[J]. Int J Mol Sci,2020,21 (4):1261. doi: 10.3390/ijms21041261
|
[116] |
Guan YX,Ding L,Jiang JF,Shentu YY,Zhao WQ,et al. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium[J]. Hortic Res,2021,8:87. doi: 10.1038/s41438-021-00525-y
|
[117] |
Yuan S,Zhang ZW,Zheng C,Zhao ZY,Wang Y,et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proc Natl Acad Sci USA,2016,113 (27):7661−7666. doi: 10.1073/pnas.1602004113
|
[118] |
Lin YL,Tsay YF. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis[J]. J Exp Bot,2017,68 (10):2603−2609. doi: 10.1093/jxb/erx053
|
[119] |
Sanagi M,Aoyama S,Kubo A,Lu Y,Sato Y,et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis[J]. Proc Natl Acad Sci USA,2021,118 (19):e2022942118. doi: 10.1073/pnas.2022942118
|
[120] |
Zhang SN,Zhang YY,Li KN,Yan M,Zhang JF,et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice[J]. Curr Biol,2021,31 (4):671−683.e5. doi: 10.1016/j.cub.2020.10.095
|
[1] | Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282 |
[2] | Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140 |
[3] | Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152 |
[4] | Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503 |
[5] | ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487 |
[6] | CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394 |
[7] | SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346. |
[8] | CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353 |
[9] | He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588. |
[10] | CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266. |